Круговорот воды биосфере. Круговорот воды в биосфере

Проработав эти темы, Вы должны уметь:

  1. Дать определения: "экология", "экологический фактор", "фотопериодизм", "экологическая ниша", "среда обитания", "популяция", "биоценоз", "экосистема", "продуцент", "консумент", "редуцент", "сукцессия", "агроценоз".
  2. Приводить примеры фотопериодических реакций растений и, по возможности, животных.
  3. Объяснить разницу между местообитанием популяции и ее нишей. Привести примеры на каждое из этих понятий.
  4. Прокомментировать закон Шелфорда и уметь строить график зависимости организмов от абиотических факторов среды.
  5. Описать пример успешного биологического метода борьбы с вредителями.
  6. Объяснить причины демографического взрыва и возможные последствия, а также значение снижения рождаемости, которое, как правило, следует за снижением смертности.
  7. Построить схему пищевой цепи; правильно указать трафический уровень каждого компонента данной экосистемы.
  8. Построить схему простого круговорота следующих элементов: кислорода, азота, углерода.
  9. Описать события, происходящие при зарастании озера; после вырубки леса.
  10. Указать различия между агроценозом и биоценозом.
  11. Рассказать о значении и структуре биосферы.
  12. Объяснить, каким образом сельское хозяйство, использование ископаемого топлива и производство пластмасс способствуют загрязнению среды и предложить меры для предотвращения этого.

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 18. "Среда обитания. Экологические факторы." глава 1; стр. 10-58
  • Тема 19. "Популяции. Типы взаимоотношений организмов." глава 2 §8-14; стр. 60-99; глава 5 § 30-33
  • Тема 20. "Экосистемы." глава 2 §15-22; стр. 106-137
  • Тема 21. "Биосфера. Круговороты веществ." глава 6 §34-42; стр. 217-290

Круговорот воды в природе (гидрологический цикл) - процесс циклического перемещения воды в земной биосфере. Состоит из испарения, конденсации и осадков.

Моря теряют из-за испарения больше воды, чем получают с осадками, на суше - положение обратное. Вода непрерывно циркулирует на земном шаре, при этом её общее количество остаётся неизменным.

Три четверти поверхности земного шара покрыты водой. Водную оболочку Земли называют гидросферой. Большую ее часть составляет соленая вода морей и океанов, а меньшую - пресная вода озер, рек, ледников, грунтовые воды и водяной пар.

На земле вода существует в трех агрегатных состояниях: жидком, твердом и газообразном. Без воды невозможно существование живых организмов. В любом организме вода является средой, в которой происходят химические реакции, без которых не могут жить живые организмы. Вода является самым ценным и самым необходимым веществом для жизнедеятельности живых организмов.

Постоянный обмен влагой между гидросферой, атмосферой и земной поверхностью, состоящий из процессов испарения, передвижения водяного пара в атмосфере, его конденсации в атмосфере, выпадения осадков и стока, получил название круговорота воды в природе. Атмосферные осадки частично испаряются, частично образуют временные и постоянные водостоки и водоемы, частично - просачиваются в землю и образуют подземные воды.

Различают несколько видов круговоротов воды в природе:

1. Большой, или мировой, круговорот - водяной пар, образовавшийся над поверхностью океанов, переносится ветрами на материки, выпадает там в виде атмосферных осадков и возвращается в океан в виде стока. В этом процессе изменяется качество воды: при испарении соленая морская вода превращается в пресную, а загрязненная - очищается.

2. Малый, или океанический, круговорот - водяной пар, образовавшийся над поверхностью океана, сконденсируется и выпадает в виде осадков снова в океан.

3. Внутриконтинентальный круговорот - вода, которая испарилась над поверхностью суши, опять выпадают на сушу в виде атмосферных осадков.

В конце концов, осадки в процессе движения опять достигают Мирового океана.

Ф-Х свойства воды

1. Поверхностное натяжение - это степень сцепления молекул воды друг с другом. Органические и неорганические соединения растворяются в жидких средах, содержащих воду, поэтому поверхностное натяжение потребляемой нами воды имеет большое значение. Любая жидкость в организме содержит воду и, так или иначе, участвует в реакциях. Вода в организме играет роль растворителя, обеспечивает транспортную систему и служит средой обитания наших клеток. Поэтому, чем ниже поверхностное натяжение, соответственно, выше растворяющая способность воды, тем лучше вода выполняет свои основные функции. В том числе и роль транспортной системы. Поверхностное натяжение определяет смачиваемость воды и ее растворяющие свойства. Чем ниже поверхностное натяжение, тем выше растворяющие свойства, тем выше текучесть. Все три величины - поверхностное натяжение, текучесть и растворяющая способность - связаны между собой.


2. Кислотно-щелочное равновесие воды. Основные жизненные среды (кровь, лимфа, слюна, межклеточная жидкость, спинномозговая жидкость и др.) имеют слабощелочную реакцию. При сдвигах их в кислую сторону, меняются биохимические процессы, организм закисляется. Это ведет к развитию болезней.

3. Окислительно-восстановительный потенциал воды. Это способность воды вступать в биохимические реакции. Она определяется наличием свободных электронов в воде. Это очень важный показатель для организма человека.

4. Жесткость воды - наличие в ней различных солей.

5. Температура воды определяет скорость протекания биохимических реакций.

6. Минерализация воды. Наличие в воде макро- и микроэлементов необходимо для жизнедеятельности организма человека. Жидкости организма представляют собой электролиты, восполняемые минералами, в том числе и за счет воды.

7. Экология воды - химическое загрязнение и биогенное загрязнение. Чистота воды - наличие в ней примесей, бактерий, солей тяжелых металлов, хлора и др.

8. Структура воды. Вода представляет собой жидкий кристалл. Диполи молекулы воды ориентируются в пространстве определенным образом, соединяясь в структурные конгломераты. Это позволяет жидкости составлять единую биоэнергоинформационную среду. Когда вода находится в состоянии твердого кристалла (льда), молекулярная решетка жестко ориентирована. При таянии разрываются жесткие структурные молекулярные связи. И часть молекул, высвобождаясь, образует жидкую среду. В организме вся жидкость структурирована особым образом.

9. Информационная память воды. За счет структуры кристалла происходит запись информации, исходящей от биополя. Это одно из очень важных свойств воды, имеющее большое значение для всего живого.

10. Хадо - волновая энергетика воды.

2. Биологическое значение воды

Вода как растворитель. Вода – превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, у которых заряженные частицы (ионы) диссоцииируют в воде, когда вещество растворяется, а также некоторые неионные соединения, например сахара и простые спирты, в молекуле которых присутствуют заряженные (полярные) группы (-OH).

Когда вещество растворяется, его молекулы или ионы получают возможность двигаться более свободно и, соответственно, его реакционная способность возрастает. По этой причине в клетке большая часть химических реакций протекает в водных растворах. Неполярные вещества, например липиды, не смешиваются с водой и потому могут разделять водные растворы на отдельные компартаменты, подобно тому, как их разделяют мембраны. Неполярные части молекул отталкиваются водой и в её присутствии притягиваются друг к другу, как это бывает, например, когда капельки масла сливаются в более крупные капли; иначе говоря, неполярные молекулы гидрофобны. Подобные гидрофобные взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеиновых кислот и других субклеточных структур.

Присущие воде свойства растворителя означают также, что вода служит средой для транспорта различных веществ. Эту роль она выполняет в крови, в лимфатической и экскреторных системах, в пищеварительном тракте и во флоэме и ксилеме растений.

Большая теплоёмкость. Удельной теплоёмкостью воды называют количество теплоты в джоулях, которое необходимо, чтобы поднять температуру 1 кг воды на 1° C. Вода обладает большой теплоёмкостью (4,184 Дж/г). Это значит, что существенное увеличение тепловой энергии вызывает лишь сравнительно небольшое повышение её температуры. Объясняется такое явление тем, что значительная часть этой энергии расходуется на разрыв водородных связей, ограничивающих подвижность молекул воды.

Большая теплоёмкость воды сводит к минимуму происходящие в ней температурные изменения. Благодаря этому биохимические процессы протекают в меньшем интервале температур, с более постоянной скоростью и опасность нарушения этих процессов от резких отклонений температуры грозит им не столь сильно. Вода служит для многих клеток и организмов средой обитания, для которой характерно довольно значительное постоянство условий.

Большая теплота испарения. Скрытая теплота испарения есть мера количества тепловой энергии, которую необходимо сообщить жидкости для её перехода в пар, то есть для преодоления сил молекулярного сцепления в жидкости. Испарение воды требует довольно значительных количеств энергии (2494 Дж/г). Это объясняется существованием водородных связей между молекулами воды. Именно в силу этого температура кипения воды – вещества со столь малыми молекулами – необычно высока.

Энергия, необходимая молекулам воды для испарения, черпается из их окружения. Таким образом, испарение сопровождается охлаждением. Это явление используется у животных при потоотделении, при тепловой одышке у млекопитающих или у некоторых рептилий (например, у крокодилов), которые на солнцепёке сидят с открытым ртом; возможно, оно играет заметную роль и в охлаждении транспирирующих листьев.

Большая теплота плавления. Скрытая теплота плавления есть мера тепловой энергии, необходимой для расплавления твёрдого вещества (льда). Воде для плавления (таяния) необходимо сравнительно большое количество энергии. Справедливо и обратное: при замерзании вода должна отдать большое количество тепловой энергии. Это уменьшает вероятность замерзания содержимого клеток и окружающей их жидкости. Кристаллы льда особенно губительны для живого, когда они образуются внутри клеток.

Плотность и поведение воды вблизи точки замерзания. Плотность воды (максимальна при +4° С) от +4 до 0° С понижается, поэтому лёд легче воды и в воде не тонет. Вода – единственное вещество, обладающее в жидком состоянии большей плотностью, чем в твёрдом, так как структура льда более рыхлая, чем структура жидкой воды.

Поскольку лёд плавает в воде, он образуется при замерзании сначала на её поверхности и лишь под конец в придонных слоях. Если бы замерзание прудов шло в обратном порядке, снизу вверх, то в областях с умеренным или холодным климатом жизнь в пресноводных водоёмах вообще не могла бы существовать. То обстоятельство, что слои воды, температура которых упала ниже 4° С, поднимаются вверх, обусловливает перемешивание воды в больших водоёмах. Вместе с водой циркулируют и находящиеся в ней питательные вещества, благодаря чему водоёмы заселяются живыми организмами на большую глубину.

После проведения ряда экспериментов было установлено, что связанная вода при температуре ниже точки замерзания не переходит в кристаллическую решётку льда. Это энергетически невыгодно, так как вода достаточно прочно связана с гидрофильными участками растворённых молекул. Это находит применение в криомедицине.

Большое поверхностное натяжение и когезия. Когезия – это сцепление молекул физического тела друг с другом под действием сил притяжения. На поверхности жидкости существует поверхностное натяжение – результат действующих между молекулами сил когезии, направленных внутрь. Благодаря поверхностному натяжению жидкость стремится принять такую форму, чтобы площадь её поверхности была минимальной (в идеале – форму шара). Из всех жидкостей самое большое поверхностное натяжение у воды (7,6 10-4 Н/м). Значительная когезия, характерная для молекул воды, играет важную роль в живых клетках, а также при движении воды по сосудам ксилемы в растениях. Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения: оно позволяет им удерживаться на воде или скользить по её поверхности.

Вода как реагент. Биологическое значение воды определяется и тем, что она представляет собой один из необходимых метаболитов, то есть участвует в метаболических реакциях. Вода используется, например, в качестве источника водорода в процессе фотосинтеза, а также участвует в реакциях гидролиза.

Вода непрерывно циркулирует на земном шаре, при этом ее общее количество остается неизменным.

Пото́к эне́ргии - это количество энергии, переносимое через некоторую произвольную площадку в единицу времени. Единицей измерения потока энергии является ватт, равный одному джоулю, делённому на секунду. Пирамиды энергетических потоков.

С каждым переходом из одного трофического уровня в другой в пределах пищевой цепи или сети совершается работа и в окружающую среду выделяется тепловая энергия, а количество энергии высокого качества, используемой организмами следующего трофического уровня, снижается.Правило 10%: при переходе с одного трофического уровня на другой 90% энергии теряется, и 10% передается на следующий уровень. Чем длиннее пищевая цепь, тем больше теряется полезной энергии. Поэтому длина пищевой цепи обычно не превышает 4 - 5 звеньев.

Круговорот кислорода. Биогенное значение кислорода. Биохимические, анатомические и физиологические механизмы использования кислорода организмами. Резервный фонд круговорота кислорода, источники поступления кислорода в биосферу.

КРУГОВОРОТ КИСЛОРОДА, взаимообмен кислородом, осуществляемый между атмосферой и океанами, между процессами, происходящими в животных и растениях, и химическим горением. Основным источником возобновления кислорода на Земле является ФОТОСИНТЕЗ, процесс, происходящий в растениях, при котором происходит выделение кислорода. Растворенный в воде кислород поглощается водными формами жизни посредством ДЫХАНИЯ, процесса, жизненно-важного для всех форм жизни, кроме анаэробных бактерий. Этот химический элемент обладает высочайшим свойством к окислению, образуя множество окислов, как с металлами, так и с неметаллами. Именно поэтому многие металлы и неметаллы не встречаются в чистом виде, а только в виде руд, которые по своему составу являются различными окислами. Это - наиболее распространенный элемент Земли. Морская вода содержит его свыше 80%, а почти половина веса земной коры принадлежит кислороду. Такое высокое содержание кислорода стало возможным благодаря фотосинтезу. Зеленые растение под действием солнечного света превращают двуокись углерода и воду в углеводы и кислород. Его значение для жизни на Земле трудно переоценить. Все соединения этого элемента и он сам играют огромную роль в обмене веществ любого живого организма, от одноклеточных до многоклеточных. Почти все организмы получают энергию для своей жизнедеятельности благодаря участию кислорода в процессах окисления. Если процессы дыхания, горения и гниения уменьшают количество кислорода в атмосфере, то фотосинтез зеленых растений его активно пополняет. Поэтому таким важным для Земли является сохранение имеющейся площади зеленых насаждений.

В каждом цикле различают две части или два фонда:

Резервный фонд – большая масса медленно движущихся веществ, в основном небиологический компонент;

Подвижный, или обменный, фонд – меньший, но более активный, для которого характерен быстрый обмен между организмами и их непосредственным окружением. Для биосферы в целом все биогеохимические круговороты делят на круговороты газообразных веществ с резервным фондом в атмосфере или гидросфере (океан) и осадочный цикл с резервным фондом в земле.

Круговорот серы. Биологическое значение серы. Резервный фонд серы. Микробиологические процессы в круговороте серы. Антропогенная трансформация круговорота серы. Поступление серы в атмосферу. Проблема загрязнения атмосферы соединениями серы.

Круговорот серы охватывает воду, почву и атмосферу с осадками. Сера имеет важное биологическое значение, поскольку входит в состав широко распространенных в живой природе аминокислот, белков и других органических соединений. Сера содержится во всех организмах.

Сера химически активна и особенно легко соединяется при нагревании почти со всеми элементами. Сера попадает в атмосферу в виде:

Сероводорода (H2S – бесцветный, сильно ядовитый газ) при извержении вулканов, при разложении органических веществ в затапливаемых низинах и болотах;

Диоксида серы (SО2 – бесцветный удушливый газ) при извержении вулканов и частиц сульфатных солей из мельчайших брызг океанической воды.

С кислородом при температуре более 300о С сера образует оксиды: SO2 – сернистый ангидрид и SO3 – серный ангидрид. Они образуются в процессах сжигания топлива в котельных установках и являются источниками для образования кислых дождей.

В большом геологическом круговороте сера переносится с океана на материки с атмосферными осадками, а возвращается в океан со стоком. Одновременно ее запасы в атмосфере пополняются за счет вулканической деятельности. Основные резервы серы находятся в почве и отложениях. В обменном фонде главная роль принадлежит микроорганизмам, одни из которых восстановители, а другие – окислители.

В малом круговороте сульфаты поглощаются растениями, и затем по цепям питания серу получают животные. При разрушении остатков организмов образуется сероводород, который в дальнейшем окисляется или до элементарной серы, или до сульфитов, а частично улетучивается в атмосферу.

Для серы характерен обширный резервный фонд в земной коре и меньший - в атмосфере и гидросфере.

Круговорот серы.Около трети всех соединений серы и 99% диоксида серы, попадающих в атмосферу, имеют антропогенное происхождение. Сжигание серосодержащих углей и нефти для производства электроэнергии дает примерно две трети всех антропогенных выбросов диоксида серы в атмосферу. Оставшаяся треть выделяется во время таких технологических процессов, как переработка нефти, выплавка металлов из серосодержащих медных, свинцовых и цинковых руд.

Существуют три основных источника естественной эмиссии серы.

1. Процессы разрушения биосферы. С помощью анаэробных (действующих без участия кислорода) микроорганизмов происходят различные процессы разрушения органических веществ. Благодаря этому содержащаяся в них сера образует газообразные соединения. Вместе с тем определенные анаэробные бактерии извлекают из сульфатов, растворенных в естественных водах, кислород, в результате чего образуются сернистые газообразные соединения.3

Из указанных веществ сначала в атмосфере был обнаружен сероводород, а затем с развитием измерительных приборов и способов отбора проб воздуха удалось выделить ряд органических газообразных соединений серы. Наиболее важными источниками этих газов являются болота, зоны приливов и отливов у береговой линии морей, устья рек и некоторые почвы, содержащие большое количество органических веществ.

Поверхность моря также может содержать значительные количества сероводорода. В его возникновении принимают участие морские водоросли. Можно предположить, что выделение серы биологическим путем не превышает 30-40 млн т в год, что составляет около 1/3 всего выделяемого количества серы.

2. Вулканическая деятельность. При извержении вулкана в атмосферу наряду с большим количеством двуокиси серы попадают сероводород, сульфаты и элементарная сера. Эти соединения поступают главным образом в нижний слой - тропосферу, а при отдельных, большой силы извержениях наблюдается увеличение концентрации соединений серы и в более высоких слоях - в стратосфере. С извержением вулканов в атмосферу ежегодно в среднем попадает около 2 млн т серосодержащих соединений. Для тропосферы это количество незначительно по сравнению с биологическими выделениями, для стратосферы же извержения вулканов являются самым важным источником появления серы.

В результате деятельности человека в атмосферу попадают значительные количества соединений серы, главным образом в виде ее двуокиси. Среди источников этих соединений на первом месте стоит уголь, сжигаемый в зданиях и на электростанциях, который дает 70% антропогенных выбросов. Содержание серы (несколько процентов) в угле достаточно велико (особенно в буром угле). В процессе горения сера превращается в сернистый газ, а часть серы остается в золе в твердом состоянии. 4

Круговорот веществ в биосфере – это «путешествие» определённых химических элементов по пищевой цепи живых организмов, благодаря энергии Солнца. В процессе «путешествия» некоторые элемент, по разным причинам, выпадают и остаются как правила, в земле. Их место занимают такие же, которые, обычно, попадают из атмосферы. Это максимально упрощенное описание того, что является гарантией жизни на планете Земля. Если такое путешествие почему-то прервется, то и существование всего живого прекратится.

Чтобы описать кратко круговорот веществ в биосфере необходимо поставить несколько отправных точек. Во-первых, из более чем девяноста химических элементов, известных и встречающихся в природе, для живых организмов, необходимо около сорока. Во-вторых, количество этих веществ ограничено. В-третьих, речь идет только о биосфере, то есть о жизнь содержащей оболочке земли, а, значит, о взаимодействиях между живыми организмами. В-четвертых, энергией, которая способствует круговороту, является энергия, поступающая от Солнца. Энергия, рождающаяся в недрах Земли в результате различных реакций, в рассматриваемом процессе участия не принимает. И последнее. Необходимо опередить точку отсчета этого «путешествия». Она условна, так как не может быть конца и начала у круга, но это необходимо для того, чтобы с чего-то начать описывать процесс. Начнем с самого нижнего звена трофической цепи – с редуцентов или могильщиков.

Ракообразные, черви, личинки, микроорганизмы, бактерии и прочие могильщики, потребляя кислород и используя энергию, перерабатывают неорганические химические элементы в органическую субстанцию, пригодную для питания живыми организмами и дальнейшего ее движения по пищевой цепи. Далее эти, уже органические вещества, едят консументы или потребители, к которым относятся не только животные, птицы, рыбы и тому подобное, но и растения. Последние являются продуцентами или производителями. Они, используя эти питательные вещества и энергию, вырабатывают кислород, который является основным элементом, пригодным для дыхания всего живого на планете. Консументы, продуценты и, даже редуценты погибают. Их останки, вместе с органическими веществами, находящимися в них, «падают» в распоряжение могильщиков.

И все повторяется вновь. Например, весь кислород, существующий в биосфере, делает свой оборот за 2000 лет, а углекислый газ за 300. Такой кругооборот принято называть биогеохимическим циклом.

Некоторые органические вещества в процессе своего «путешествия» вступают в реакции и взаимодействия с другими веществами. В результате образуются смеси, которые в том виде, в каком они есть, не могут быть переработаны редуцентами. Такие смеси остаются «храниться» в земле. Не все органические вещества, попадающие на «стол» могильщиков, не могут ими переработаться. Не все могут перегнить при помощи бактерий. Такие неперегнившие остатки попадают на хранение. Все, что остается на хранении или в резерве, выбывает из процесса и в круговорот веществ в биосфере не входят.

Таким образом, в биосфере круговорот веществ, движущей силой которого является деятельность живых организмов, можно разделить на две составляющие. Одна – резервный фонд – это часть вещества, которая не связана с деятельностью живых организмов и до времени в обороте не участвует. И вторая – это оборотный фонд. Он представляет собой лишь небольшую часть вещества, которая активно используется живыми организмами.

Атомы каких основных химических элементов столь необходимы для жизни на Земле? Это: кислород, углерод, азот, фосфор и некоторые другие. Из соединений, основным в кругообороте, можно назвать воду.

Кислород

Круговорот кислорода в биосфере следует начать с процесса фотосинтеза, в результате которого миллиарды лет назад он и появился. Он выделяется растениями из молекул воды под воздействием солнечной энергии. Кислород образуется также в верхних слоях атмосферы в ходе химических реакций в парах воды, где химические соединения разлагаются под воздействие электромагнитного излучения. Но это незначительный источник кислорода. Основным является фотосинтез. Кислород содержится и в воде. Хотя его там, в 21 раз меньше, чем в атмосфере.

Образовавшийся кислород используется живыми организмами для дыхания. Он также является окислителем для различных минеральных солей.

И человек является потребителем кислорода. Но с началом научно-технической революции, это потребление многократно возросло, так как кислород сжигается или связывается при работе многочисленных промышленных производств, транспорта, для удовлетворения бытовых и иных нужд в ходе жизнедеятельности людей. Существовавший до этого так называемый обменный фонд кислорода в атмосфере в размере 5% общего его объема, то есть вырабатывалось в процессе фотосинтеза столько кислорода, сколько его потреблялось. То теперь этого объема становиться катастрофически мало. Происходит потребление кислорода, так сказать, из неприкосновенного запаса. Оттуда, куда его уже некому добавить.

Незначительно смягчает эту проблему, что некоторая часть органических отходов не перерабатывается и не попадает под воздействие гнилостных бактерий, а остается в осадочных породах, образуя торф, уголь и тому подобные ископаемые.

Если результатом фотосинтеза является кислород, то его сырьем – углерод.

Азот

Круговорот азота в биосфере связан с образованием таких важнейших органических соединений, как: белки, нуклеиновые кислоты, липопротеиды, АТФ, хлорофилл и другие. Азот, в молекулярной форме, содержится в атмосфере. Вместе с живыми организмами — это всего около 2% всего, имеющего на Земле азота. В таком виде он может употребляться только бактериями и сине-зелёными водорослями. Для остального растительного мира в молекулярной форме азот не может служить питанием, а может перерабатываться лишь в виде неорганических соединений. Некоторые виды таких соединений образуются во время гроз и с дождевыми осадками попадают в воду и почву.

Самыми активными «переработчиками» азота или азотофиксаторами являются клубеньковые бактерии. Они поселяются в клетках корней бобовых и преобразовывают молекулярный азот в его соединения, пригодные для растений. После их отмирания, азотом обогащается и почва.

Гнилостные бактерии расщепляют азотосодержащие органические соединения до аммиака. Часть его уходит в атмосферу, а другая иными видами бактерий окисляется до нитритов и нитратов. Те, в свою очередь, поступают в качестве питания для растений и нитрифицирующими бактериями восстанавливаются до оксидов и молекулярного азота. Которые вновь попадают в атмосферу.

Таким образом, видно, что основную роль в кругообороте азота, играют различные виды бактерий. И если уничтожить хотя бы 20 таких видов, то жизнь на планете прекратится.

И опять установленный кругооборот был разорван человеком. Он для целей увеличения урожайности сельскохозяйственных культур, стал активно применять азотосодержащие удобрения.

Углерод

Круговорот углерода в биосфере неразрывно связан с кругооборотом кислорода и азота.

В биосфере схема круговорота углерода базируется на жизнедеятельности зеленых растений и их способности к превращению углекислого газа в кислород, то есть фотосинтезе.

Углерод взаимодействует с другими элементами различными способами и входит в состав практически всех классов органических соединений. Например, он входит в состав углекислого газа, метана. Он растворен в воде, где его содержание значительно больше чем в атмосфере.

Хотя по распространённости углерод не входит в десятку, но в живых организмах он составляет от 18 до 45% сухой массы.

Мировой океан служит регулятором содержания углекислого газа. Как только его доля в воздухе повышается, вода выравнивает положения, поглощая углекислый газ. Еще одним потребителем углерода в океане являются морские организмы, которые используют его для строительства раковин.

Круговорот углерода в биосфере основывается на наличии в атмосфере и гидросфере углекислого газа, который является своеобразным обменным фондом. Пополняется он за счет дыхания живых организмов. Бактерии, грибы и другие микроорганизмы, принимающие участие в процессе разложения органических остатков в почве, также участвуют в пополнении углекислым газом атмосферы.Углерод «консервируется» в минерализованных неперегнивших органических остатках. В каменном и буром угле, торфе, горючих сланцах и тому подобных отложениях. Но основным резервным фондом углерода являются известняки и доломиты. Содержащийся в них углерод «надежно спрятан» в глубине планеты и высвобождается лишь при тектонических сдвигах и выбросах вулканических газов при извержениях.

Благодаря тому, что процесс дыхания с выделение углерода и процесс фотосинтеза с его поглощением проходит через живые организмы очень быстро, в кругообороте участвует лишь незначительная доля всего углерода планеты. Если бы этот процесс был невзаимным, то растения только суши использовали весь углерод всего в течение 4-5 лет.

В настоящее время, благодаря деятельности человека, растительный мир не имеет недостатка с углекислым газом. Он пополняется сразу и одновременно из двух источников. Путем сжигания кислорода при работе промышленности производств и транспорта, а также в связи с использованием для работы этих видов человеческой деятельности тех «консервов» — угля, торфа, сланцев и так далее. Отчего содержание углекислого газа в атмосфере возросло на 25%.

Фосфор

Круговорот фосфора в биосфере неразрывно связан с синтезом таких органических веществ, как: АТФ, ДНК, РНК и другие.

В почве и воде содержание фосфора очень мало. Основные его запасы в горных породах, образовавшихся в далеком прошлом. С выветриванием этих пород начинается кругооборот фосфора.

Растениями фосфор усваивается лишь в виде ионов ортофосфорной кислоты. В основном это продукт переработки могильщиками органических остатков. Но если почвы имеют повышенный щелочной или кислотный фактор, то фосфаты практически в них не растворяются.

Фосфор является прекрасным питательным веществом для различного вида бактерий. Особенно сине-зеленой водоросли, которая при увеличенном содержании фосфора бурно развивается.

Тем не менее большая часть фосфора уносится с речными и другими водами в океан. Там он активно поедается фитопланктоном, а с ним морским птицам и другим видам животных. Впоследствии фосфор попадает на океаническое дно и формирует осадочные породы. То есть возвращается в землю, лишь под слоем морской воды.

Как видно кругооборот фосфора специфичен. Его трудно и назвать кругооборотом, так как он не замкнут.

Сера

В биосфере круговорот серы необходим для образования аминокислот. Он создает трехмерную структуру белков. В нем участвуют бактерии и организмы, потребляющие кислород для синтеза энергии. Они окисляют серу до сульфатов, а одноклеточные доядерные живые организмы, восстанавливают сульфаты до сероводорода. Кроме них, целые группы серобактерий, окисляют сероводород до серы и далее до сульфатов. Растения могут потреблять из почвы лишь ион серы — SO 2- 4. Таким образом, одни микроорганизмы являются окислителями, а другие восстановителями.

Местами накопления серы и ее производных в биосфере является океан и атмосфера. В атмосферу сера поступает с выделением сероводорода из воды. Кроме того, сера попадает в атмосферу в виде диоксида при сжигании на производствах и в бытовых нуждах горючего ископаемого топлива. В первую очередь угля. Там она окисляется и, превращаясь в серную кислоту в дождевой воде, с ней же выпадает на землю. Кислотные дожди сами по себе наносят существенный вред всему растительному и животному миру, а кроме этого, с ливневыми и талыми водами, попадают в реки. Реки несут ионы сульфатов серы в океан.

Содержится сера также в горных породах в виде сульфидов, в газообразном виде — сероводород и сернистый газ. На дне морей имеются залежи самородной серы. Но это все «резерв».

Вода

В биосфере нет более распространенного вещества. Его запасы в основном в солено-горьком виде вод морей и океанов – это около 97%. Остальное пресные воды, ледники и подземные и грунтовые воды.

Круговорот воды в биосфере условно начинается с ее испарения с поверхности водоемов и листьев растений и составляет примерно 500 000 куб. км. Обратно она возвращается в виде осадков, которые попадают либо непосредственно обратно в водоемы, либо, пройдя через почву и подземные воды.

Роль воды в биосфере и истории ее эволюции такова, что вся жизнь с момента своего появления, была полностью зависима от воды. В биосфере вода многократно через живые организмы прошла циклы разложения и рождения.

Кругооборот воды имеет под собой в большей степени физический процесс. Однако, животный и, особенно, растительный мир принимает в этом немаловажное участие. Испарения воды с поверхностных участков листьев деревьев таков, что, например, гектар леса испаряет в сутки до 50 тонн воды.

Если испарение воды с поверхностей водоемов естественно для ее кругооборота, то для континентов с их лесными зонами, такой процесс – единственный и главный способ его сохранения. Здесь кругооборот идет как бы в замкнутом цикле. Осадки образуются из испарений с поверхностей почвы и растений.

В процессе фотосинтеза растения используют водород, содержащийся в молекуле воды, для создания нового органического соединения и выделения кислорода. И, наоборот, в процессе дыхания, живые организмы, происходит процесс окисления и вода образуется снова.

Описывая кругооборот различный видов химических веществ, мы сталкиваемся с более активным влиянием человека на эти процессы. В настоящее время природа, за счет многомиллиардной истории своего выживания, справляется с регулированием и восстановлением нарушенных балансов. Но первые симптомы «болезни» уже есть. И это «парниковый эффект». Когда две энергии: солнечная и отраженная Землей, не защищают живые организмы, а, наоборот, усиливают одна другую. В результате чего повышается температура окружающей среды. Какие последствия такого повышения могут быть, кроме ускоренного таяния ледников, испарения воды с поверхностей океана, суши и растений?

Видео — Круговорот веществ в биосфере

Биогеохимические круговороты. В.И. Вернадский писал: «Живое вещество охватывает и перестраивает все химические процессы биосферы, действенная его энергия огромна. Живое вещество есть самая мощная геологическая сила, растущая сходом времени» . Данное высказывание является постулатом о важнейшей роли живых организмов в формировании и поддержании основных физико-химических свойств оболочек Земли. В концепции биосферы выявляется целостность функциональной системы в пространстве, занятой жизнью, где реализуется единство геологических и биологических сил на нашей планете. Основные свойства жизни реализуются за счет высокой химической активности живых организмов, их подвижности и способности к самопроизведению и эволюции. В поддержании жизни как планетарного явления важнейшее значение имеет биоразнообразие, множество форм жизни, которые отличаются набором потребляемых веществ и выделяемых в среду продуктов жизнедеятельности. Биоразнообразие - основа устойчивого (самоподдержи-вающего) функционирования биосферы, которая создает биогеохимические циклы вещества, превращение энергии и использование информации.

Круговорот биогенов. Из почти 100 химических элементов, которые встречаются в природной среде, почти 40 необходимы для функционирования живых организмов. Из этих химических элементов N (азот), С (углерод), Н (водород), О (кислород), Р (фосфор), Б (сера) (в том числе и в катионной форме) относятся к главным биогенам, которые требуются в значимых объемах. Химические элементы циркулируют в биосфере по различным путям биологического круговорота: поглощаются живым веществом, «заряжаются» энергией, затем покидают живое вещество, отдавая накопленную энергию во внешнюю среду (табл. 19).

Биогеохимические циклы с круговоротными принципами функционирования в геосферах Земли подразделяются на два основных типа: 1) круговорот газообразных веществ с резервным фондом в атмосфере или гидросфере (океан) и 2) осадочный цикл с резервным фондом в земной коре.

Процессы круговорота происходят в конкретных экосистемах, но в полном виде биогеохимические циклы реализуются лишь на уровне биосферы в целом.

Круговорот углерода. Углерод является одним из самых, наверное, часто упоминаемых химических элементов при рассмотрении геологических, биологических, а в последние годы и технических проблем. Углерод (С) встречается на нашей планете в чрезвычайно

разнообразных соединениях, начиная с нахождения в виде чистого углерода (графит, уголь и т. д.), вплоть до высокомолекулярных органических соединений. Неорганическое вещество, лежащее в основе биогенного круговорота этого элемента, - диоксид углерода (углекислый газ С0 2). Диоксид углерода является одним из главных составляющих компонентов атмосферы, а также находится в гидросфере в растворенном состоянии. При описании фотосинтеза был рассмотрен процесс перехода углерода из состава диоксида углерода в сахара (глюкозу и др.). Следующие за этим другие разнообразные реакции синтеза в биологических системах образовавшиеся углеводы трансформируют в более сложные высокомолекулярные органические соединения: липиды, крахмал, гликоген и др. Постепенно происходит формирование тканей и их рост за счет вновь образованных соединений. Одновременно эти вещества являются источником органических соединений для других живых организмов. В последующих жизненных процессах за счет кислорода, поступающего при дыхании, происходит окисление органических соединений, представляющее в данном случае ряд последовательных реакций, в результате чего образуется диоксид углерода, который выводится за пределы организма и поступает либо в атмосферу, либо растворяется в воде (рис. 97).

После завершения жизненного цикла - гибели (смерти) организма его ткани подвергаются биологическому разложению под воздействием редуцентов, что также приводит к поступлению диоксида углерода в атмосферу. Этот процесс приурочен к почвенным горизонтам и определяет сущность почвенного дыхания.

Другим процессом, движущим углерод, является образование гумуса с помощью сапрофагов и последующую минерализацию вещества под действием грибов и бактерий. Это весьма медленный процесс, скорость которого обусловлена количеством кислорода, химическим составом почвы, се температурой. При недостатке кислорода и высокой кислотности происходит накопление углерода в торфе. Аналогичные процессы в отдаленные геологические эпохи сформировали залежи угля и нефти, что останавливало процесс круговорота углерода.

Если все процессы жизнедеятельности протекают в гидросфере, то происходит аналогичная приостановка в результате связывания углерода в кальците (СаСО,), входящим в состав коралловых, фузули-новых, ракушечных известняков, писчего мела.и др. Это самая глубокая консервация углерода, освобождение которого возможно лишь при регрессии моря и дальнейшем выщелачивании карбонатных пород за счет атмосферных осадков или при биологическом выветривании под действием лишайников, корней растений и микроорганизмов.

Химические элементы, содержащиеся в живых организмах, и их присутствие в окружающей среде (Б. Небел, 1993)

Биологически важные молекулы или ионы, содержащие данный элемент

Присутствие в окружающей среде

Название

Горные породы и почвы

Диоксид углерода (углекислый газ)

Кислород (для дыхания)

Газообразный

кислород

Кислород (выделяемый при фотосинтезе)

Газообразный азот

аммоний-ион

нитрат-ион

Сульфат-ион

Фосфат-ион

Ион калия

Ион кальция

Ион магния

Микроэлементы:

Ионы железа

Марганец

Ион марганца

Ион цинка

Молибден

Ион молибдена

Ион хлора

Примечание. Перечисленные элементы входят восстав всех живых организмов-растений, животных, микробов. Некоторым видам нужны и другие элементы (например, человеку нужен ешс натрий и йод).

Восполнение ресурсов СОг в процессе л ^ деятельности человека

Равновесие атмосфера -вода

Известняк

Рис. 97. Круговорот углерода в биосфере

Известковые | П _ 07 и (коралловые) Р ‘ рифы х м

Круговорот фосфора. Фосфор один из достаточно широко распространенных химических элементов, входящих в состав различных, в том числе и породообразующих минералов, формирующих ряд горных пород. В процессе выветривания этих пород в значительных количествах фосфор поступает в биогеоценозы, а также за счет выщелачивания атмосферными осадками и в конечном счете накапливается в гидросфере. Во всех случаях фосфор оказывается в пищевых системах, но его подготовка не является простой. Фосфор же необходим организмам для построения генов и молекул соединений, переносящих энергию внутри клеток (рис. 98).

В минералах фосфор содержится в форме неорганического фосфата-иона (РО4 3). Фосфаты обладают растворимостью, но не образуют газообразных форм, т. е. нелетучи. Растения способны к поглощению фосфата из водного раствора для включения их в состав различных органических соединений. В растениях фосфор выступает уже в форме так называемого органического фосфата. В этой форме он уже способен к движению по пищевым цепям и к его передаче ор-

Рис 98.

ганизмам экосистем. При каждом переходе от одного трофического уровня к другому достаточное количество фосфоросодержащего соединения для получения организмом энергии подвергается окислению при клеточном дыхании. В этом случае фосфор может оказаться только в составе мочи или ее аналогов и быть выведенным за пределы организма в окружающую среду, где собственно может начать дальнейший цикл через поглощение растениями.

Необходимо остановиться более подробно на различиях в круговоротах фосфора и углерода. Углерод в виде диоксида углерода поступает в виде газа в атмосферу, где свободно распространяется повсеместно воздушными потоками вплоть до нового усвоения растениями. Фосфор же не образует аналогичной газовой формы, и свободного возврата его в экосистему нет. Жидкие же соединения фосфора поступают в водоемы, где они активно насыщают (вплоть до перенасыщения) водные экосистемы. Из водоема фосфор не может возвратиться на сушу, за исключением небольшого количества в виде помета рыбоядных птиц, который откладывается на побережье, на-

пример залежи гуано на побережье Перу, фосфаты откладываются на дне водоемов. Возвращаются на сушу фосфоросодержащие горные породы вместе с процессами регрессии моря и при орогенезе.

Как считает Б. Небел, фосфат и аналогичные минеральные биогены, находящиеся в почве, циркулируют в экосистеме лишь в том случае, если содержащие их «отходы» жизнедеятельности откладываются в местах поглощения данного элемента. Это характерно для всех естественных экосистем (Б. Небел, 1993).

Круговорот кислорода. Биохимический цикл - планетарный процесс, который является объединяющим элементом для атмосферы, гидросферы и литосферы. В атмосфере преобладающей формой кислорода является молекула О г, но, как отмечали уже, имеется еще О,-озон и О-атомарный кислород. Кислород в свободной форме является как продуктом жизнедеятельности, так и элементом, поддерживающим жизнь. В.И. Вернадский писал: «Жизнь, создающая в земной коре свободный кислород, тем самым создает озон и предохраняет биосферу от губительных коротких излучений небесных светил» . На рис. 99 показан круговорот кислорода в биосфере, из которого видно, что он представляет собой сумму весьма сложных процессов, так как кислород входит в состав многих различных органических и-неорганических соединений. Однако главным является обмен между атмосферой и живыми организмами. Процесс фотосин-


Озоновый

экран

Рис. 99. Круговорот кислорода в биосфере (П. Клауд, А. Джибор, 1972)

Фитопланктон Лк "в освещенной зоне Г Г

НгО+СРгНгСОгНСХ^^Н -2НС0 3 -Н 2 0+С0^

теза продуцирует кислород, а процессы разложения его связывают. Незначительное количество кислорода образуется в процессе диссоциации молекул воды и озона в верхних слоях атмосферы под воздействием ультрафиолетовой радиации. Значительная часть кислорода расходуется на окислительные процессы в земной коре, при вулканических извержениях и т. п.

Круговорот азота. Движение азота представляет собой достаточно сложный и отличительный от круговорота других биогенов процесс, так как включает в себя газообразную и минеральную фазу. Атмосфера содержит 78 % азота (Ы 2). При всей огромной значимости азота для жизнедеятельности живых организмов они не могут непосредственно потреблять этот газ из атмосферы. Растения усваивают ионы аммония (ЫН^) или нитрата (N0^). Для того чтобы азот преобразовался в эти формы, необходимо участие некоторых бактерий или синезеленых водорослей (цианобактерий). Процесс превращения газообразного азота (Ы,) в аммонийную форму носит название азотфиксации. Важнейшую роль среди азотфиксирующих микроорганизмов играют бактерии из рода ЮйгоЫит, которые образуют симбиотические связи с бобовыми растениями. Среди последних наибольшее значение имеют клевер и люцерна. Азотфиксирующие бактерии, создавая форму азота, которая усваивается растениями, за счет симбиотического взаимодействия,позволяют накапливаться азоту в наземных и подземных частях растений; к примеру за год на одном гектаре клевера или люцерны накапливается от 150 до 400 кг азота. Сами азотфиксирующие микроорганизмы, среди которых есть виды, синтезирующие

.Атмосферный азот

Белок

Изверженные

породы

Биологи - РастительВосстановление Денитри-

ческа я ные и живот нитратов фикация

Фиксация «ь/е отходы,

)мертвые организмы

імиак

іитри^ьі

В подземные воды

Оксид азота (!)

Нитраты

Рис. 100. Круговорот азота в биосфере

сложные протеины, отмирая, обогащают почву органическим азотом. При этом за год в почву поступает около 25 кг азота на 1 га (И.А. Шилов, 2000) (рис. 100).

В природе есть также микроорганизмы, которые обладают симбиотическими связями не только с бобовыми, но и с другими растениями. В водной среде и на переувлажненных почвах азотфиксаиию осуществляют синезеленые водоросли (способные одновременно и к фотосинтезу). В любом из описан ных случаев азот потребляется либо в виде нитратов, либо в аммонийной форме.

Азот после потребления его растениями участвует в синтезе протеинов, которые, сосредоточиваясь в листьях растений, затем обеспечивают азотное питание фитофагов. Мертвые организмы и отходы жизнедеятельности (экскременты) являются средой обитания и служат пищей для сапрофагов, которые, как мы уже отмечали выше, постепенно разлагают органические азотосодержащие соединения до неорганических. По Й.А. Шилову (2000), конечным звеном в этой цепи оказываются аммонифицирующие организмы, образующие аммиак (N14,), который, кстати, может быть вовлечен в цикл нитрификации. Шггозотопаь окисляют аммиак в нитриты, а №{гоЬас(ег окисляют нитриты в нитраты и таким образом круговорот азота может быть продолжен. Параллельно с описанными процессами происходит постоянное возвращение азота в атмосферу за счет деятельности бактерий-денитрификатов, способных разлагать нитраты и в азот (N2). Эти бактерии, как правило, имеют широкое распространение в плодородных почвах там, где много азота и углерода. Эти бактерии за годе I га поверхности почвы выделяют в атмосферу до 50-60 кг азота (рис. 101).

Кроме указанных процессов азот-фиксации в природной среде возможно образование оксидов азота при электрических грозовых разрядах. Эти оксиды затем в виде селитры или азотной кислоты при смешивании с атмосферными осадками попадают в почву (при разрядах молний фиксируется от 4 до 10 кг азота на 1 га). Имеет место и фотохимическая фиксация азота.

Рис. 101. * Клубеньки» на корнях бобовых растений (Б. Небел, 1992)


Атмо

сфера

Почва и * осадки

Сульфиды железа

Рис. 102. Круговорот серы в биосфере

Возможно выключение азота из круговоротных процессов путем аккумуляции его соединений в глубоководных океанических осадках, что компенсируется, правда, частичным выделением азота (N2) при вулканических извержениях.

Круговорот серы. Это один из главных биогенов, который попадает в почвенные горизонты в результате естественного разложения отдельных горных пород, содержащих такие минералы, как пирит - серный колчедан (Ре8 2), медный колчедан (СиРе8 3) и при разложении органических веществ, преимущественно растительного происхождения. Из почвы по корневым системам сера поступает в растения, где синтезируются серосодержащие аминокислоты - цистин, цистеин, метионин. Для процессов жизнедеятельности сера необходима животным в значительных количествах, попадает она к ним с пищей (рис. 102).

Из органических соединений сера поступает в почву при разложении преимущественно растительных остатков микроорганизмами. Сера органического происхождения восстанавливается в сероводород (Н 2 3), минеральную серу или окисляется в сульфаты, которые вновь могут быть поглощены корнями растений, т. е. вновь поступает в биологический круговорот.

Круговорот воды. В данном случае речь идет не об отдельном биогене, а о соединении двух важнейших биогенов водорода (Н) и кислорода (О), т. е. воды, значимость которой для жизни на Земле абсолютна. Круговорот воды представляет собой процесс непрерывного, взаимосвязанного перемещения воды в глобальных масштабах. Круговорот воды осуществляется под влиянием солнечной энергии,


гравитации, жизнедеятельности организмов. В целом для планеты главным источником прихода воды служат атмосферные осадки, а расхода - испарение, которые сбалансированно составляют 525 тыс. км! или 1030 мм в год.

На рис. 103 показан круговорот воды, в котором можно выделить так называемые малый и большой. При малом круговороте вода, испарившаяся с поверхности океана, вновь возвращается в него в виде атмосферных осадков. При большом круговороте часть испарившейся с водной поверхности влаги выпадает не только на океан, но и на сушу, где питает реки и другие водоемы, но в конечном счете с подземным или поверхностным стоком возвращается в океан.

Выше были рассмотрены аспекты водного баланса гидросферы. Необходимо отметить, что наибольшей активностью в водообмене обладают речные воды (обновляются каждые 11 дней) против, например, вод полярных ледников (обмен совершается за 8000 лет). Речная вода в естественных условиях практически всегда пресная и служит для потребления многими живыми организмами. По мнению многих ученых, круговорот воды представляет собой глобальный гигантский опреснитель воды.

Значимую роль в процессе круговорота воды играет эвапотранс-пирация, которая представляет собой количество влаги, переходящее в атмосферу в результате транспирации зеленых растений и испарения с поверхности почвы, т. е. суммарное испарение (принято измерять его в мг/(дм 5 ч).). Транспирацией именуют испарение воды зелеными частями растений, причем она испаряется со всей наружной и всех внутренних поверхностей растений, соприкасающихся с

воздухом. Общая транспирация зависит от многих экологических факторов (освещенность, сухость воздуха, ветер, рельеф и др.). Наибольшей транспирацией характеризуются болотные и плавающие растения (рогоз, частуха, рдест - до 4000 мг/(дм 2 -ч)). Из наземных растений сильнее всего транспирируют травянистые растения солнечных местообитаний - до 2500 мг/(дм 2 - ч); кустарники в тундре дают всего 150 мг/(дм 2 -ч), а тропические деревья в лесах области туманов лишь до 120 мг/(дм 2 -ч). У вечнозеленых хвойных пород игольчатая хвоя в передней части устьичного аппарата имеет высокую пробку, которая служит дополнительным препятствием для транспирации. У пустынных растений транспирация служит единственным способом защиты организма от летальных последствий воздействий высоких температур.

Проведенные специалистами ФРГ количественные оценки роли эвапотранспирации в круговороте воды показали следующее: при средней годовой норме осадков 771 мм в море с подземным и поверхностным стоком поступает менее их половины - 367 мм, а оставшиеся 404 мм эвапотранспирируются. Шведские ученые установили, что 1 га елового леса за один год транспирирует при сухой почве до 2100 м 1 воды. Величина эвапотранспирации для растительных формаций средней Европы составляет до 7000 т на 1 га в год. Отдельные виды древесных пород с успехом могут использоваться для осушения болот. Классическим примером может служить осушение Колхидских болот в Грузии посадками эвкалиптов (25, 42].

Круговорот биогенных катионов. В процессах обмена веществ живых организмов необходимо участие различных катионов. Некоторые из них содержатся в довольно значительных количествах и поэтому их относят к категории микроэлементов - это натрий (Ыа), калий (К), кальций (Са), магний (^). Другие содержатся в малых количествах (миллионные доли сухого вещества), но также обязательны для устойчивого функционирования живых организмов. Это микроэлементы в виде катионов железа (Ре), цинка {Ъп), меди (Си), марганца (Мп) и некоторые другие.

Основным источником биогенных катионов на суше является почва, куда они попадают при процессах выветривания горных пород. Из почвы с помощью корневой системы растений катионы попадают сначала в ткани растений, а затем поглощаются травоядными и т. д. Ряд животных способен частично получать биогенные катионы непосредственно из почвы - процесс солонцевания. Минерализация экскрементов и остатков живых организмов позволяет макро- и микроэлементам возвратиться в почву, что вновь делает их доступными для включения в повторный биогенный круговорот.

Такой довольно простой цикл нарушается выносом биогенных элементов в реки и оттуда в моря и океаны. Выщелачивание дождевыми водами приводит к деградации коллоидального абсорбирующего комплекса и к ослаблению корневых систем растений. Особенно заметно этот процесс проявляется во влажном климате; в умеренной зоне это приводит к оподзоливанию почв.

Биогеохимические процессы у различных организмов. Входящие в биогеохимические циклы различные биологические соединения и неорганические элементы вовлекаются в весьма разнообразные, многоступенчатые процессы: органический синтез, многократная трансформация органических веществ при метаболизме и разложении их до минеральных составляющих при редуцировании. Отдельные элементы круговоротных процессов главных биогенов, рассмотренные выше, составляют биологический круговорот веществ. Основные трофические уровни, которые образуют базу этого круговорота, представлены конкретными видами продуцентов, кон-сументов, редуцентов и естественно, что они существенно различаются между собой по типу метаболизма, а это значит и по конкретной функции, выполняемой на данном трофическом уровне.

Автотрофы и гетеротрофы представляют собой главное подразделение живых организмов по пищевому признаку; автотрофы относятся к продуцентам, а гетеротрофы соответственно к консументам и редуцентам.

Автотрофы, используя солнечную энергию (фотосинтетики) или энергию химических связей (хемосинтетики) из диоксида углерода, воды и необходимых минеральных компонентов, синтезируют основные классы органических веществ: углеводы, жиры (липиды), белки, нуклеиновые кислоты и т. п. Каждое из этих веществ имеет свое значение для жизнедеятельности организмов.

Углеводы. Принципиальная формула этих соединений углерода, водорода и кислорода - С т (Н,0)„. В класс углеводов входят сахара: моносахариды - С 6 Н }

Случайные статьи

Вверх