Изгиб определение углов поворот и прогибов. Углом поворота поперечного сечения

Определение перемещений в балках аналитическим способом

Пример 1

Условие задачи

Для балки, показанной на рис. 4.20, а , требуется найти прогиб в сечении С , угол поворота в сечении В аналитическим способом и проверить условие жесткости, если допускаемый прогиб равен l /100. Балка выполнена из дерева и имеет поперечное сечение из трех бревен радиусом 12 см. (Подбор сечения этой балки см. в разд. 4.1.2, пример 1.)

Решение

Для определения перемещений балки аналитическим способом составим дифференциальное уравнение изогнутой оси (4.16), используя правила Клебша записи выражения для изгибающего момента. Начало координат в рассматриваемой задаче рациональнее выбрать справа (в заделке). Распределенную нагрузку , которая не доходит до левого конца балки, продлим до сечения С (рис. 4.20, в ). Выражение для изгибающего момента будет иметь такой вид:

.

Подставим это выражение в дифференциальное уравнение (4.16) и проинтегрируем его два раза:

;

;

.

Для определения постоянных С и D запишем граничные условия: в заделке (в сечении А , где находится начало координат) угол поворота и прогиб балки равны нулю, то есть

И .

Подставляя эти условия в выражения для угла поворота и прогиба на первом участке, найдем, что

Теперь можно определить заданные перемещения. Для определения угла поворота в сечении В подставим в выражение для угла поворота на первом участке (только до черты с номером I) значение :

В соответствии с правилом знаков отрицательный знак угла поворота для выбранного начала координат х справа означает, что поворот сечения происходит по часовой стрелке.

В сечении С , где требуется найти прогиб, координата х равна , и это сечение находится на третьем участке балки, поэтому подставляем х = 4 м в выражение для прогибов, используя слагаемые на всех трех участках:

кН·м 3 .

Знак минус у найденного прогиба показывает, что сечение С перемещается вверх. Покажем найденные перемещения на изогнутой оси балки. Чтобы нарисовать ось балки после деформации, построим эпюру изгибающих моментов (рис. 4.20, б ). Положительный знак эпюры М на участке показывает, что балка на этом участке изгибается выпуклостью вниз, при отрицательном знаке М изогнутая ось имеет выпуклость вверх. Кроме того, деформированная ось балки должна удовлетворять условиям закрепления: в нашем случае на правом конце балка имеет жесткое защемление, и, как уже отмечалось при записи граничных условий, прогиб и угол поворота в защемлении должны равняться нулю. На рис. 4.20, г изображена ось рассматриваемой балки после деформации, удовлетворяющая этим условиям. На изогнутой оси показаны найденные прогиб в сечении С и угол поворота сечения В с учетом их знаков.

В заключение сосчитаем прогиб балки в сантиметрах, угол поворота в радианах и проверим условие жесткости. Найдем жесткость ЕI рассматриваемой деревянной балки из трех бревен радиусом 12 см. Момент инерции поперечного сечения

см 4 .

Модуль упругости дерева Е = 10 4 МПа = 10 3 кН / см 2 . Тогда

Прогиб балки в сечении С

см,

а угол поворота сечения В

рад.

Очевидно (см. рис. 4.20, г ), что найденный прогиб балки в сечении С является максимальным, поэтому для проверки условия жесткости сравним его с допускаемым прогибом. Для балки длиной м допускаемый прогиб согласно условию см. Таким образом, максимальный прогиб см меньше допускаемого, и условие жесткости выполняется.

Пример 2

Условие задачи

В балке с двумя консолями, показанной на рис. 4.21, а надо найти угол поворота сечения А и прогиб сечения D , используя аналитический способ. Сечение балки – двутавр № 24.

Решение

Выберем начало отсчета координаты х на левом конце балки в точке А и запишем выражение для изгибающего момента на всех участках с учетом правил Клебша:

Подставим это выражение в дифференциальное уравнение изогнутой оси (4.16) и проинтегрируем его дважды:


Найдем произвольные постоянные С и D из граничных условий. В точках В и С , где находятся опоры, прогибы не возможны. Поэтому

Получили систему из двух уравнений с двумя неизвестными С и D . Решая эту систему, найдем С = 40 кН·м 2 , D = – 40 кН·м 3 . Проанализируем результат, используя геометрический смысл произвольных постоянных С и D . На рис. 4.21, в показана изогнутая ось балки, соответствующая эпюре изгибающих моментов и условиям закрепления. Точка А , находящаяся в начале координат, перемещается вверх, и поэтому следует ожидать, что будет иметь в соответствии с правилом знаков отрицательный знак. Сечение в точке А поворачивается по часовой стрелке, поэтому постоянная должна быть положительна. Полученные знаки С и D не противоречат проведенному анализу.

После определения начального угла поворота вычисляется прогиб сечения А.

, показанная на рис.2.3 пунктиром, вводится в тех случаях, когда прогиб определяется в сечении, которое находится за пределами участка действия распределенной нагрузки.

Угол поворота сечения В вычисляется по формуле (2.20), в которой следует принять

2.2.2. Интеграл Мора.

Универсальная формула Мора вычисления упругих перемещений в стержневых системах является естественным обобщением формулы Кастильяно. Для линейно упругих стержневых систем формула Кастильяно имеет вид

Δ К -обобщенное перемещение сечения К,

Р К –обобщенная сила, соответствующая обобщенному перемещению Δ К,

U –функция потенциальной энергии.

Потенциальная энергия является квадратичной функцией усилий и для изгибаемых элементов записывается в виде

(2.22)

В подавляющем большинстве случаев влиянием поперечной силы на величину потенциальной энергии пренебрегают. Комбинирование формул (2.21) и (2.22) дает

(2.23)

Частная производная соответствует функции изгибающего момента , вызванного действием единичной обобщенной силы ,приложенной в сечении К по направлению искомого перемещения. Формула (2.23), записанная в виде

(2.24)

определяет частный вид универсальной формулы Мора применительно к определению перемещений в изгибаемых элементах.

На практике используется графоаналитический прием вычисления интеграла Мора (прием Верещагина).

‑ площадь грузовой эпюры (эпюра изгибающего момента от действия заданной нагрузки);

‑ ордината единичной эпюры (эпюра изгибающего момента от действия единичной обобщенной силы), измеренная под центром грузовой эпюры.

Вычисление интеграла Мора по формуле Верещагина в учебной литературе называется "перемножением" эпюр.

В ряде случаев при вычислении интеграла Мора удобно пользоваться формулой Симпсона

(2.26)

где индексы "н", "с", "к" ‑ обозначают соответственно начало, середину и конец участка перемножаемых эпюр.

Пример 2. Определить прогиб сечения А и угол поворота сечения В балки, рассмотренной в примере 1 (рис.2.4.а).

Вычисление интеграла Мора произвести по формуле Симпсона.

Для определения прогиба сечения А строится грузовая М р (рис.2.4.б) и единичная (рис.2.4.в) эпюры изгибающих моментов.

Перемножение грузовой и единичной эпюр изгибающих моментов по формуле Симпсона дает

Для определения угла поворота опорного сечения В строится вторая единичная эпюра изгибающего момента от действия единичного момента, приложенного в сечении В балки (рис.2.4.г).

Величина угла поворота определяется перемножением грузовой и единичной (рис.2.4.г) эпюр изгибающих моментов.

Примечание. Знак минус в ответах означает, что направления действительных перемещений сечений А и В будут противоположными направлениям перемещений, соответствующих единичным обобщенным силам.

2.3. Статически неопределимые балки
(Метод сил раскрытия статической неопределимости)

Статически неопределимые балки содержат "лишние" связи (при удалении лишних связей балки становятся статически определимыми). Число лишних связей определяет степень статической неопределимости задачи.

Статически определимая геометрически неизменяемая балка, полученная из заданной статически неопределимой путем удаления лишних связей, называется основной системой метода сил.

Алгоритм решения статически неопределимых балок методом сил рассмотрен на примере один раз статически неопределимой балки (рис. 2.5.а).

Решение задачи начинается с выбора основной системы метода сил (рис. 2.5.б). Следует отметить, что это не единственный вариант выбора основной системы (в частности, возможен вариант удаления внутренних связей путем постановки шарнира).

Суть метода сил заключается в отрицании перемещений по направлению удаленной связи. Математически это условие записывается в виде уравнения совместности перемещений

, (2.27)

δ 11 – перемещение по направлению отброшенной связи, вызванное действием единичного значения неизвестной реакции удаленной связи (рис. 2.5.в)

Δ 1Р – перемещение по направлению отброшенной связи, вызванное действием заданной нагрузки (рис. 2.5.г)

Вычисление перемещений δ 11 , Δ 1Р производится по формуле Симпсона.

Коэффициент δ 11 канонического уравнения метода сил определяется перемножением единичной эпюры (рис. 2.5.е) самой на себя

Коэффициент Δ 1Р канонического уравнения метода сил вычисляется перемножением единичной (рис. 2.5.е) и грузовой (рис. 2.5.д ) эпюр

Из решения уравнения (2.27) определяется реакция X 1 лишней связи

Этот этап решения соответствует раскрытию статической неопределимости задачи.

Эпюра изгибающего момента М x (рис. 2.5.з) в статически неопределимой балке строится по формуле

(2.28)

На рис. 2.5.ж представлена "исправленная" единичная эпюра, все ординаты которой увеличены в X 1 раз.

Рассмотренный алгоритм решения статически неопределимых задач с помощью метода сил пригоден и для решения статически неопределимых задач при кручении, при осевом действии нагрузок, а также при сложной деформации стержня.

2.4. Устойчивость сжатых стержней

Для полного представления о работе сооружения наряду с расчетами на прочность и жесткость необходимы расчеты на устойчивость сжатых и сжато-изогнутых элементов.

Инженерные объекты кроме расчетных нагрузок могут подвергаться дополнительным, не предусмотренным в расчете, малым возмущениям, способным вызвать в элементах объекта непроектную деформацию (искривление оси сжатых элементов, пространственный изгиб плоско изогнутого элемента). Результат такого дополнительного воздействия зависит от интенсивности нагрузок, действующих на элемент конструкции. Для каждого элемента существует некоторое критическое значение нагрузки, при превышении которого малое случайное возмущение вызывает необратимую непроектную деформацию. Такое состояние объекта является опасным.


4. Изгиб. определение перемещений.

4.1. Дифференциальное уравнение изогнутой оси балки и его интегрирование.

При изгибе ось балки искривляется, а поперечные сечения перемещаются поступательно и поворачиваются вокруг нейтральных осей, оставаясь при этом нормальными к изогнутой продольной оси (рис. 8.22). Деформированная (изогнутая) продольная ось балки называется упругой линией, а поступательные перемещения сечений, равные перемещениям y = y (x ) их центров тяжести сечений – прогибами балки.

Между прогибами y (x ) и углами поворота сечений θ (x ) существует определенная зависимость. Из рис. 8.22 видно, что угол поворота сечения θ равен углу φ наклона касательной к упругой линии (θ и φ - углы с взаимноперпендикулярными сторонами). Но согласно геометрическому смыслу первой производной y / = tg θ . Следовательно, tg θ =tg φ =y / .

В пределах упругих деформаций прогибы балок обычно значительно меньше высоты сечения h , а углы поворота θ не превышают 0.1 – 0.15 рад. В этом случае связь между прогибами и углами поворота упрощается и принимает вид θ =y / .

Определим теперь форму упругой линии. Влияние перерезывающих сил Q на прогибы балок, как правило, незначительно. Поэтому с достаточной точностью можно принять, что при поперечном изгибе кривизна упругой линии зависит только от величины изгибающего момента M z и жесткости EI z (см. уравнение (8.8)):

Приравнивая правые части (8.26) и (8.27) и учитывая, что правила знаков для M z и y // были приняты независимо друг от друга, получаем

Выбор знака в правой части (8.29) определяется направлением координатной оси y , так как от этого направления зависит знак второй производной y // . Если ось направлена вверх, то, как видно из рис. 8.23, знаки y // и M z совпадают, и в правой части надо оставить знак плюс. Если же ось направлена вниз, то знаки y // и M z противоположны, и это заставляет выбрать в правой части знак минус.

Заметим, что уравнение (8.29) справедливо только в пределах применимости закона Гука и лишь в тех случаях, когда плоскость действия изгибающего момента M z содержит одну из главных осей инерции сечения.

Интегрируя (8.29), находим сначала углы поворота сечений

Постоянные интегрирования определяются из граничных условий. На участках с различными аналитическими выражениями для изгибающих моментов дифференциальные уравнения упругой линии также различны. Интегрирование этих уравнений при n участках дает 2 n произвольных постоянных. Для их определения к граничным условиям на опорах добавляются условия равенства прогибов и углов поворота на стыке двух смежных участков балки.

Лекция 13 (продолжение). Примеры решения на вычисление перемещений методом Мора-Верещагина и задачи для самостоятельного решения

Определение перемещений в балках

Пример 1.

Определить перемещение точки К балки (см. рис.) при помощи интеграла Мора.

Решение.

1) Составляем уравнение изгибающего момента от внешней силы M F .

2) Прикладываем в точке К единичную силу F = 1.

3) Записываем уравнение изгибающего момента от единичной силы .

4) Определяем перемещения

Пример 2.

Определить перемещение точки К балки по способу Верещагина.

Решение.

1) Строим грузовую эпюру.

2) Прикладываем в точке К единичную силу.

3) Строим единичную эпюру.

4) Определяем прогиб

Пример 3.

Определить углы поворота на опорах А и В

Решение.

Строим эпюры от заданной нагрузки и от единичных моментов, приложенных в сечениях А и В (см. рис.). Искомые перемещения определяем с помощью интегралов Мора

,

, которые вычисляем по правилу Верещагина.

Находим параметры эпюр

C 1 = 2/3, C 2 = 1/3,

а затем и углы поворота на опорах А и В

Пример 4.

Определить угол поворота сечения С для заданной балки (см. рис.).

Решение.

Определяем опорные реакции R A =R B ,

, , R A = R B = qa .

Строим эпюры изгибающего момента от заданной нагрузки и от единичного момента, приложенного в сечении С , где ищется угол поворота. Интеграл Мора вычисляем по правилу Верещагина. Находим параметры эпюр

C 2 = -C 1 = -1/4,

а по ним и искомое перемещение

Пример 5.

Определить прогиб в сечении С для заданной балки (см. рис.).

Решение.

Эпюра M F (рис. б)

Опорные реакции:

ВЕ : , ,

, R B + R E = F , R E = 0;

АВ : , R А = R В = F ; , .

Вычисляем моменты в характерных точках , M B = 0, M C = Fa и строим эпюру изгибающего момента от заданной нагрузки.

Эпюра (рис. в).

В сечении С , где ищется прогиб, прикладываем единичную силу и строим от нее эпюру изгибающего момента, вычисляя сначала опорные реакции ВЕ - , , = 2/3; , , = 1/3, а затем моменты в характерных точках , , .

2. Определение искомого прогиба. Воспользуемся правилом Верещагина и вычислим предварительно параметры эпюр и :

,

Прогиб сечения С

Пример 6.

Определить прогиб в сечении С для заданной балки (см. рис.).

Решение.

С. Пользуясь правилом Верещагина, вычисляем параметры эпюр ,

и находим искомый прогиб

Пример 7.

Определить прогиб в сечении С для заданной балки (см. рис.).

Решение.

1. Построение эпюр изгибающих моментов.

Опорные реакции:

, , R A = 2qa ,

, R A + R D = 3qa , R D = qa .

Строим эпюры изгибающих моментов от заданной нагрузки и от единичной силы, приложенной в точке С .

2. Определение перемещений. Для вычисления интеграла Мора воспользуемся формулой Симпсона, последовательно применяя ее к каждому из трех участков, на которые разбивается балка.

Участок АВ :

Участок ВС :

Участок С D :

Искомое перемещение

Пример 8.

Определить прогиб сечения А и угол поворота сечения Е для заданной балки (рис. а ).

Решение.

1. Построение эпюр изгибающих моментов.

Эпюра М F (рис. в ). Определив опорные реакции

, , R B = 19qa /8,

, R D = 13qa /8, строим эпюры поперечной силы Q и изгибающего момента М F от заданной нагрузки.

Эпюра (рис. д). В сечении А , где ищется прогиб, прикладываем единичную силу и строим от нее эпюру изгибающего момента.

Эпюра (рис. е). Эта эпюра строится от единичного момента, приложенного в сечении Е , где ищется угол поворота.

2. Определение перемещений. Прогиб сечения А находим, пользуясь правилом Верещагина. Эпюру М F на участках ВС и CD разбиваем на простые части (рис. г). Необходимые вычисления представляем в виде таблицы.

-qa 3 /6

2qa 3 /3

-qa 3 /2

-qa 3 /2

C i

-qa 4 /2

5qa 4 /12

-qa 4 /6

-qa 4 /12

-qa 4 /24

Получаем .

Знак “минус” в результате означает, что точка А перемещается не вниз, как была направлена единичная сила, а вверх.

Угол поворота сечения Е находим двумя способами: по правилу Верещагина и по формуле Симпсона.

По правилу Верещагина, перемножая эпюры M F и , по аналогии с предыдущим получим

,

Для нахождения угла поворота по формуле Симпсона вычислим предварительно изгибающие моменты посредине участков:

Искомое перемещение, увеличенное в EI x раз,

Пример 9.

Определить, при каком значении коэффициента k прогиб сечения С будет равен нулю. При найденном значении k построить эпюру изгибающего момента и изобразить примерный вид упругой линии балки (см. рис.).

Решение.

Строим эпюры изгибающих моментов от заданной нагрузки и от единичной силы, приложенной в сечении С , где ищется прогиб.

По условию задачи V C = 0. С другой стороны, . Интеграл на участке АВ вычисляем по формуле Симпсона, а на участке ВС – по правилу Верещагина.

Находим предварительно

Перемещение сечения С ,

Отсюда , .

При найденном значении k определяем значение опорной реакции в точке А : , , , исходя из которого находим положение точки экстремума на эпюре М согласно условию .

По значениям момента в характерных точках

строим эпюру изгибающего момента (рис. г).

Пример 10.

В консольной балки, изображенной на рисунке.

Решение.

М от действия внешней сосредоточенной силы F : М В = 0, М А = –F 2l (эпюра линейная).

По условию задачи требуется определить вертикальное перемещение у В точки В консольной балки, поэтому строим единичную эпюру от действия вертикальной единичной силы F i = 1, приложенной в точке В .

Учитывая, что консольная балка состоит из двух участков с разной жесткостью на изгиб, эпюры и М перемножаем с помощью правила Верещагина по участкам отдельно. Эпюры М ипервого участка перемножаем по формуле , а эпюры второго участка – как площадь эпюры М второго участка Fl 2 / 2 на ординату 2l /3 эпюры второго участка под центром тяжести треугольной эпюры М этого же участка.

В этом случае формула дает:

Пример 11.

Определить вертикальное перемещение точки В однопролетной балки, изображенной на рисунке. Балка имеет постоянную по всей длине жесткость на изгиб EI .

Решение.

Строим эпюру изгибающих моментов М от действия внешней распределенной нагрузки: М А = 0; M D = 0;

Прикладываем в точке В единичную вертикальную силу F i = 1 и строим эпюру (см. рис.):

откуда R a = 2/3;

Откуда R d = 1/3, поэтому M a = 0; M d = 0; .

Разделим рассматриваемую балку на 3 участка. Перемножение эпюр 1-го и 3-го участков не вызывает трудностей, так как перемножаем треугольные эпюры. Для того чтобы применить правило Верещагина ко 2-му участку, разобьем эпюру М 2-го участка на две составляющие эпюры: прямоугольную и параболическую с площадью (см. таблицу).

Центр тяжести параболической части эпюры М лежит посередине 2-го участка.

Таким образом, формула при использовании правила Верещагина дает:

Пример 12.

Определить максимальный прогиб в двухопорной балке, нагруженной равномерно распределенной нагрузкой интенсивности q (см. рис.).

Решение.

Находим изгибающие моменты:

От заданной нагрузки

От единичной силы, приложенной в точке С , где ищется прогиб .

Вычисляем искомый наибольший прогиб, который возникает в среднем сечении балки

Пример 13.

Определить прогиб в точке В балки, показанной на рисунке.

Решение.

Строим эпюры изгибающих моментов от заданной нагрузки и единичной силы, приложенной в точке В. Чтобы перемножить эти эпюры, надо балку разбить на три участка, так как единичная эпюра ограничена тремя различными прямыми.

Операция перемножения эпюр на втором и третьем участках осуществляется просто. Затруднения возникают при вычислении площади и координат центра тяжести основной эпюры на первом участке. В таких случаях намного упрощает решение задачи построение расслоенных эпюр. При этом удобно одно из сечений принять условно за неподвижное и строить эпюры от каждой из нагрузок, приближаясь справа и слева к этому сечению. Целесообразно за неподвижное принимать сечение в месте перелома на эпюре единичных нагрузок.

Расслоенная эпюра, в которой за неподвижное принято сечение В , представлена на рисунке. Вычислив площади составных частей расслоенной эпюры и соответствующие им ординаты единичной эпюры, получаем

Пример 14.

Определить перемещения в точках 1 и 2 балки (рис. а).

Решение.

Приведем эпюры М и Q для балки при а =2 м; q =10 кН/м; С =1,5а ; М =0,5qa 2 ; Р =0,8qa ; М 0 =М ; =200 МПа (рис. б и в ).

Определим вертикальное перемещение центра сечения, где приложен сосредоточенный момент. Для этого рассмотрим балку в состоянии под действием только сосредоточенной силы приложенной в точке 1 перпендикулярно оси балки (по направлению искомого перемещения ) (рис. г).

Вычислим опорные реакции, составив три уравнения равновесия

Проверка

Реакции найдены верно.

Для построения эпюры рассмотрим три участка (рис. г).

1 участок

2 участок

3 участок

По этим данным строим эпюру (рис. д) со стороны растянутых волокон.

Определим по формуле Мора с помощью правила Верещагина. При этом криволинейную эпюру , на участке между опорами, можно представить в виде сложения трех эпюр. Стрелка

Знак «минус» означает, что точка 1 перемещается вверх (в направлении противоположном ).

Определим вертикальное перемещение точки 2, где приложена сосредоточенная сила. Для этого рассмотрим балку в состоянии под действием только сосредоточенной силы приложенной в точке 2 перпендикулярно оси балки (по направлению искомого перемещения ) (рис. е).

Эпюра строится аналогично предыдущей.

Точка 2 перемещается вверх.

Определим угол поворота сечения, где приложен сосредоточенный момент.

2013_2014 учебный год II семестр Лекция № 2.6 стр. 12

Деформация балок при изгибе. Дифференциальное уравнение изогнутой оси балки. Метод начальных параметров. Универсальное уравнение упругой линии.

6. Деформация балок при плоском изгибе

6.1. Основные понятия и определения

Рассмотрим деформацию балки при плоском изгибе. Ось балки под действием нагрузки искривляется в плоскости действия сил (плоскость x 0y ), при этом поперечные сечения поворачиваются и смещаются на некоторую величину. Искривленная ось балки при изгибе называется изогнутой осью или упругой линией .

Деформацию балок при изгибе будем описывать двумя параметрами:

    прогиб (y ) – смещение центра тяжести сечения балки по направлению, перпендикулярному

рис. 6.1 к ее оси.

Не путать прогиб y с координатой y точек сечения балки!

Наибольший прогиб балки называется стрелой прогиба (f = y max );

2) угол поворота сечения () – угол, на который сечение поворачивается относительно своего первоначального положения (или угол между касательной к упругой линии и первоначальной осью балки).

В общем случае величина прогиба балки в данной точке является функцией координаты z и может быть записана в виде следующего уравнения:

Тогда угол между касательной к изогнутой оси балки и осью x будет определяться из следующего выражения:

.

Ввиду малости углов и перемещений, можем считать, что

угол поворота сечения есть первая производная от прогиба балки по абсциссе сечения.

6.2. Дифференциальное уравнение изогнутой оси балки

Исходя из физической природы явления изгиба, можем утверждать, что изогнутая ось непрерывной балки должна быть непрерывной и гладкой (неимеющей изломов) кривой. При этом деформация того или иного участка балки определяется искривлением его упругой линии, то есть кривизной оси балки.

Ранее нами была получена формула для определения кривизны бруса (1/ρ) при изгибе

.

С другой стороны, из курса высшей математики известно, что уравнение кривизны плоской кривой выглядит следующим образом:

.

Приравняв правые части данных выражений, получим дифференциальное уравнение изогнутой оси балки, которое называется точным уравнением изогнутой оси бруса

В координатной системе прогибов z 0 y , когда ось y направлена вверх, знак момента определяет знак второй производной от y по z .

Интегрирование данного уравнения, очевидно, представляет некоторые трудности. Поэтому его, как правило, записывают в упрощенной форме, пренебрегая величиной в скобках по сравнению с единицей.

Тогда дифференциальное уравнение упругой линии балки будем рассматривать в виде:

(6.1)

Решение дифференциального уравнения (6.1) найдем, интегрируя обе его части по переменной z :

(6.2)

(6.3)

Постоянные интегрирования C 1 , D 1 находят из граничных условий – условий закрепления балки, при этом для каждого участка балки будут определяться свои постоянные.

Рассмотрим процедуру решения данных уравнений на конкретном примере.

Дано:

Консольная балка длиной l , загруженная поперечной силой F . Материал балки (E ), форму и размеры ее сечения (I x ) также считаем известными.

Определить закон изменения угла поворота (z ) и прогиба y (z ) балки по ее длине и их значения в характерных сечениях.

Решение

а) определим реакции в заделке

б) методом сечений определим внутренний изгибающий момент:

в) определим угол поворота сечений балки

Постоянную C 1 найдем из условий закрепления, а именно – в жесткой заделке угол поворота равен нулю, тогда


(0) = 0  C 1 =0.

Найдем угол поворота свободного конца балки (z = l ) :

Знак «минус» показывает, что сечение повернулось по часовой стрелке.

г) определим прогибы балки:

Постоянную D 1 найдем из условий закрепления, а именно – в жесткой заделке прогиб равен нулю, тогда

y(0) = 0 + D 1 D 1 = 0

Найдем прогиб свободного конца балки (x = l )

.

Знак «минус» показывает, что сечение опустилось вниз.

Случайные статьи

Вверх