Воздействие аэс на окружающую среду. Энергетическое воздействие на окружающую среду Как влияет электроэнергетика на окружающую среду

На долю ТЭС в России приходится 16 % общего объёма загрязняющих веществ, поступающих в атмосферу от промышленных предприятий и транспорта.

Начиная с 1996 г. ЭК согласуют свою деятельность с "Экологической программой развития электроэнергетики до 2005 г." В основе этого основополагающего документа лежит задача постепенного сокращения выбросов (сбросов) загрязняющих веществ в окружающую природную среду даже при условии восстановления к 2010 г. масштабов производства электрической и тепловой энергии до уровня 1990 г. В ходе разработки этой программы принимались во внимание также обязательства России, взятые ею на себя при подписании международных конвенций по уменьшению трансграничного переноса диоксида серы и стабилизации к 2010 г. эмиссии диоксида углерода на уровне 1990 г.

С экологической точки зрения ТЭС, играющие доминирующую роль в производстве электроэнергии (более 60 %), представляют собой объекты, длительно воздействующие на атмосферу выбросами продуктов сгорания топлива.

В 1997 г. сохранилась положительная тенденция уменьшения выбросов в атмосферу загрязняющих веществ от ТЭС за счёт благоприятного с экологической точки зрения топливного баланса (доля природного газа в котором увеличилась с 61,5 до 62,9 % за счёт вытеснения твердого и жидкого топлива), а также проведения на ТЭС реконструктивных и технологических мероприятий, направленных на подавление образования оксидов азота и повышение эффективности золоулавливающих установок.

Как показывают приведенные ниже данные, за 1990–1997 гг. имело место существенное снижение эмиссии основных загрязнений атмосферы за счёт работы ТЭС:

Твердых частиц – на 49,1 %;

Оксидов азота – на 33,1 %;

Диоксида серы – на 43,2 %.

Заметим, однако, что за тот же период производство электроэнергии и теплоты на ТЭС снизилось на 34,2 %.

В перспективе намечается дальнейшее снижение вредных выбросов ТЭС в атмосферу, что должно обеспечить их снижение за 1990-2005 гг. до следующих уровней:

Твердых частиц – на 31,4 %;

Оксидов азота – на 12,8 %;

Диоксида серы – на 11 %.

Заметим, что наряду с мероприятиями по уменьшению вредных выбросов на ТЭС большие резервы имеются также в области энергосбережения, потенциал которого оценивается в 400 млн. т условного топлива.

ТЭС уничтожают невосполнимые запасы органического топлива, при сжигании которого образуются: шлак, пепел, сернистый ангидрид, углекислый газ, которые непосредственно загрязняют окружающую среду и влияют на потепление климата земли.

Как было ранее указано, ТЭС производится основная часть вырабатываемой электрической энергии, поэтому усовершенствованию технологических процессов сжигания топлива на ТЭС уделяется особое внимание с целью снижения отрицательного их воздействия на окружающую среду.

Воздействие ТЭС на ОС зависит и от используемого топлива. Виды топлива: твёрдое (угль, горючие сланцы), жидкое (мазут, дизельное и газотурбинное топливо) и газообразное (природный газ).

В ТЭС использующих уголь, а это топливо с высоким содержанием сернистых соединений, образующийся сернистый газ в конечном итоге превращается при взаимодействии с парами воды воздуха в стойкую серную кислоту, которая представляет угрозу здоровью человека, водоемам, и вызывает активную коррозию металлических сооружении в близлежащих районах.

Защита атмосферы от основного источника загрязнения ТЭС – сернистого ангидрида – осуществляется, прежде всего, путём его рассеивания в более высоких слоях воздушного бассейна. Для этого сооружаются дымовые трубы высотой 180, 250 и даже 320 м. Более радикальное средство сокращения выбросов сернистого ангидрида – выделение серы из топлива до его сжигания. В настоящее время существуют в основном два способа предварительной обработки топлива для снижения содержания серы, которые могут быть рекомендованы к промышленному использованию. Первый способ – химическая адсорбция, второй – каталитическое окисление. Оба способа позволяют улавливать до 90 % сернистого ангидрида.

При сжигании твердого топлива в атмосферу поступают летучая зола с частицами не догоревшего топлива, сернистый и серный ангидриды, окислы азота, некоторое количество фтористых соединений, а также газообразные продукты неполного сгорания топлива. Летучая зола в некоторых случаях содержит помимо нетоксичных составляющих и более вредные примеси. Так, в золе Донецкого угля в незначительных количествах содержится мышьяк, а в золе Экибастузского – свободная двуокись кремния, в золе сланцев и углей Канско-Ачинского бассейна – свободная окись кальция.

При сжигании жидкого топлива (мазута) с дымовыми газами в атмосферный воздух поступают: сернистый и серный ангидриды, окислы азота, газообразные и твердые продукты неполного сгорания топлива, соединения ванадия, солей натрия, а также вещества, удаляемые с поверхности котлов при чистке. С экологической позиции жидкое топливо является более «гигиеничным» по сравнению с твёрдым топливом. Отпадает проблема отвалов золы, которые занимают значительные территории, и не только исключают их из полезного использования, но и являются источником постоянных загрязнении атмосферы в районе станции из-за уносов части золы с ветрами. Кроме того, в продуктах сгорания жидких видов топлива отсутствует летучая зола. Однако доля использования жидкого топлива в энергетике за последние годы существенно снижается. Это связано с использованием жидкого топлива в других областях народного хозяйства: на транспорте, в химической промышленности, в том числе в производстве пластмасс, смазочных материалов, предметов бытовой химии и т.д.

При сжигании природного газа существенным загрязнителем атмосферы являются окислы азота. Однако при этом выброс окислов азота в среднем на 20 % ниже, чем при сжигании угля. Это объясняется не только свойствами самого топлива, но и особенностями процессов его сжигания. Таким образом, природный газ сегодня – наиболее экологически чистый вид энергетического топлива. Применение газообразного топлива на ТЭС, особенно в случае их работы в теплофикационном режиме в пределах крупных городов, в последнее время возрастает. Однако природный газ – ценное технологическое сырье для многих отраслей химической промышленности. На поставках природного газа полностью основывается, например, производство азотных удобрений в стране.

Однако снабжение газом энергетических установок связано с трудностью складирования газообразного топлива. Ведь надёжность топливоснабжения станции полностью зависит от расходных характеристик питающего станцию газопровода. Расходные характеристики газопровода имеют сезонные, месячные, недельные и часовые неравномерности потребления. Как и в энергосистемах, где имеются ярко выраженные «провалы» и «пики» электропотребления, колебания наблюдаются и в газоснабжающей системе. Причем «пики» и «провалы» в графике электро- и газоснабжающих систем совпадают во времени, что отрицательно сказывается на топливоснабжении, т.е. в то время, когда резко возрастает потребность в электроэнергии и необходимо пустить дополнительные пиковые, например газотурбинные энергоустановки (ГТУ), в газовой магистрали отсутствуют требуемые расходы газа. При отсутствии газа в магистрали можно используют дублирующий вид топлива – жидкое топливо. Использование твёрдого топлива, в качестве дублирующего, не целесообразно из-за иной конструкции котловых агрегатов и специальной системы топливоподготовки и т.д.

Создание запасов газа может быть осуществлено с помощью подземных хранилищ газа (ПХГ), для которых обычно используют объем шахтных выработок или иные естественные подземные ёмкости. Однако таким образом запасы газа для электростанций создать нельзя, поскольку необходимы соответствующие геологические условия в районе энергоустановки, что не всегда возможно. И, кроме того, есть значительные ограничения по величине и скорости подачи газа из хранилищ, что определяется техническими и экономическими обстоятельствами. Другой подход в создании ПХГ - это резервирование газообразного топлива с использованием технологии сжижения. Сущность резервирования газа с использованием сжижения заключается в следующем. Периодически в магистрали имеется избыток газа в момент "провала" графика нагрузки электропотребления. Природный газ забирается из магистрали через систему осушки и очистки и подается на холодильную установку системы сжижения. После сжижения топливо (при отрицательной температуре около –150 °С и атмосферном давлении) подается в хранилище сжиженного природного газа (ХСПГ). В случае, когда располагаемый расход топлива в магистрали снизился ниже требуемого уровня или отсутствует вообще, для нужд топливоснабжения энергоустановки используется система резервирования. При этом сжиженный природный газ подогревается, переходя снова в газообразное состояние, и направляется на сжигание в энергоустановку. Поскольку для регазификации необходимо тепло, используются потоки сбросного тепла энергоустановки. Тепловая «централизация» этих потоков в процессе регазификации позволяет снизить тепловые сбросы энергоустановки в окружающую среду.

В целом взаимодействие ТЭС с окружающей средой характеризуется помимо выбросов золы с продуктами сгорания еще и тепловыми сбросами.

Системы охлаждения конденсаторов ТЭС существенно увлажняют микроклимат в районе станции, способствуют образованию низкой облачности, туманов, снижению солнечной освещенности, вызывают моросящие дожди, а в зимнее время - иней и гололед. С охлаждающей водой ТЭС сбрасывает в близлежащие водоемы большое количество тепла, повышающее температуру воды. Влияние подогрева на флору и фауну водоемов различно в зависимости от степени подогрева. Незначительный подогрев воды при её ускоренной циркуляции благоприятно сказывается на очистке водоёмов, поэтому сточные воды должны предварительно охлаждаться и подвергаться очистке. Уменьшение отрицательного влияния сброса тепла в водные бассейны может быть достигнуто за счёт организации водохранилищ-охладителей. В среднем на 1 кВт установленной мощности ТЭС необходимо 58 м2 поверхности водохранилища.

Для уменьшения безвозвратных потерь воды используют воздушно-конденсационные установки (вку), в которых охлаждение конденсата происходит в специальных теплообменниках конверторного действия за счёт теплообмена с воздушной, а не водной средой (препятствие для широкого использования ВКУ – это их высокая стоимость).

Атомные станции (АЭС) потенциально опасны как с точки зрения утилизации продуктов распада радиоактивного топлива, захоронение которых не обеспечивает полной защиты от экологической катастрофы, так и от крупных аварий (например, авария на Чернобыльской АЭС в 1984 году).

Одна из важнейших особенностей ядерной энергетики – отсутствие зависимости работы АЭС от расстояний до мест добычи ядерного топлива, что снимает проблему расположения станций в зонах запасов топлива и позволяет приблизить АЭС к потребителю (для средней по мощности атомной станции в течение года требуется около 100–150 тонн ядерного топлива). Это объясняется прежде всего тем, что количество энергии, высвобождающейся при использовании 1 кг горючего в ядерных реакторах, более чем в 106 раз дольше, чем при химических реакциях сжигания 1 кг наиболее калорийного органического топлива.

Эксплуатация атомных станций позволяет заметно снизить уровень загрязнения окружающей среды компонентами, характерными для работы тепловых станций – С0 2 , S0 2 , МО х, пылевидными частицами и т. д. Основными факторами загрязнения среды выступают радиационные показатели. Это радиация от охлаждающей воды, активированные пылевидные частицы, находящиеся в сфере воздействия излучения и попадающие через вентиляционные каналы за пределы станции. Кроме того, это проникающая радиация через корпус реактора и тепловое воздействие на воду системы охлаждения конденсационной части станции. Несомненно, что воздействие перечисленных факторов на среду определяется многими показателями, в том числе такими, как конструкция реактора, тип оборудования контроля и вентиляции, системы очистки отходов и их транспортировки.

Наибольшую опасность АЭС представляют аварии и неконтролируемое распространение радиации.

При эксплуатации АЭС существует также проблема теплового загрязнения. В расчете на единицу производимой энергии АЭС сбрасывает в окружающую среду больше тепла, чем ТЭС при аналогичных условиях. Расход охлаждаемой воды, в зависимости от мощности, составляет от 70–180 , что соответствует стокам таких рек, как Хопер или Южный Буг.

Гидравлические электростанции. При создании водохранилищ для ГЭС затопляются большие площади лесов, сельскохозяйственных угодий, памятников культуры, а в некоторых случаях требуется переселение целых населённых пунктов. В экстремальных ситуациях (при прорыве плотин) может быть нанесён значительный ущерб экономике регионов, существует также опасность затопления городов. С поверхности водохранилищ испаряется повышенное количество влаги, которое непосредственно сказывается на изменении климата регионов и земли в целом.

Рассмотрим проблемы экологического взаимодействия гидротехнических комплексов на окружающею среду.

Гидроэнергетические станции часто относят к энергоустановкам, использующим возобновляемые источники энергии. Однако по сравнению с другими видами природных ресурсов преобразование энергии воды в электрическую энергию приводит к значительным воздействиям на окружающую среду. Для гидростанций необходимо сооружать значительные водохранилища, что приводит к затоплению прилегающей территории. Чем более равнинный рельеф в районе сооружения ГЭС, тем большие территории попадают в зону затопления.

Влияние водохранилищ на локальные климатические условия носит двойственный характер - охлаждающего и отепляющего воздействия.

Одним из важных факторов, определяющих последствия воздействия водохранилищ на окружающую среду, является площадь поверхности водохранилища. Около 88% общего числа водохранилищ в нашей стране сооружены в равнинных условиях, используемые на ГЭС напоры достигают 15–25 м, а площадь зеркала акваторий - иногда и нескольких тысяч квадратных километров.

Существенным фактором воздействия на окружающую среду является засоление и ощелачивание плодородных земель в районах орошения в случае недостаточного дренажа, что приводит к потерям полезных земель.

Малоизученным последствием строительства плотин ГЭС является, по мнению некоторых геологов и сейсмологов, так называемая "наведенная сейсмичность" в зоне расположения мощных гидроузлов и больших по объему водохранилищ. По существующей гипотезе, дополнительные напряжения, создаваемые весом воды в акватории и непосредственно самой плотиной, способны нарушить равновесное состояние земной коры в этом районе. При наличии в нем ранее неизвестных геологических разломов освободившееся напряжение значительно превышает размеры "возмущающей" нагрузки от массы воды и гидросооружений. Так, например, в декабре 1967 года в Индии была полностью разрушена плотина Коупа высотой 103 м. Причиной катастрофы явилось землетрясение, эпицентр которого располагался непосредственно под телом плотины.

Комплексный подход к определению оптимального использования ГЭС в энергосистемах приводит к выводу о целесообразности внедрения нового типа гидростанций – гидроаккумулирующих электростанции (ТАЭС). Этот перспективный тип гидроэнергетических установок предназначен, прежде всего, для выравнивания неравномерности графика электропотребления и облегчения режимов эксплуатации электростанции других типов. В ночное время и в периоды выходных дней при снижении электропотребления промышленного сектора ГАЭС работают в насосном режиме на электроэнергии, вырабатываемой другими электростанциями. При этом аккумулируются гидроэнергетические ресурсы, так как вода из нижнего барьера водохранилища электростанции перекачивается в верхний. В период резкого роста электропотребления ГАЭС переходит в генераторный режим работы и реализует «накопленные» ресурсы. Использование ГАЭС ведет к экономии топлива в энергосистеме. При этом снижается проблема покрытия пиков графика нагрузки. Это особенно важно, так как с ростом единичных мощностей агрегатов ТЭС и АЭС резко ухудшились их маневренные характеристики. Поскольку использование ГАЭС позволяет в конечном итоге осуществить снижение потребления органического топлива в энергосистеме, то эти энергоустановки с полным основанием можно рассматривать как одни из возможных методов улучшения экологических характеристик энергооборудования.

Общее вредное влияние энергетических объектов:

Энергетические объекты являются источниками излучения электромагнитных полей, которые оказывают отрицательное влияние на здоровье людей (нормируемая напряжённость электромагнитного поля составляет 20кВ/м в течение 10 минут за сутки), создают помехи для телерадиовещания. Так, например, под ЛЭП 500кВ напряжённость поля составляет 10кВ/м, под ЛЭП 750кВ – 15кВ/м.

Энергоустановки являются также источниками шума.

Изъятие из пользования природных ресурсов, земли и воды.

Мероприятия по снижению отрицательного влияния энергосистем на окружающую среду:

· Для ТЭС – усовершенствование процессов сжигания топлива, очистку продуктов сжигания и увеличение высоты труб при их выбросе в атмосферу.

· Для ГЭС – снижения строительства на реках с высоким уровнем «подпора», создание рыбоохранных сооружений, уменьшение «зеркал» поверхности водохранилищ.

· Для АЭС – совершенствование конструкций энергоблоков, методов и объектов захоронения ядерных отходов.

· Использование альтернативных, экологически чистых и безопасных, способов получения лучения электрической энергии.

Как влияет энергетика на окружающую среду?

Защита окружающей человека среды, как это всем хорошо известно, - одна из важнейших глобальных проблем. Мы остановимся только на той части проблемы, которая связана с электростанциями. Воздействие на окружающую среду различных типов электростанций (ТЭС, ГЭС, АЭС) различно, и поэтому рассмотрим каждый из этих трех случаев отдельно.

Пожалуй, наибольшее отрицательное воздействие на окружающую среду в настоящее время оказывают ТЭС. Их воздействие заключается в загрязнении атмосферы мелкими твердыми частицами золы (Так как большинство ТЭС использует в качестве топлива мелкоизмельченный (в специальных мельницах) уголь, унос мелких частиц несгоревшего угля ничтожен; коэффициент избытка воздуха в топке всегда больше единицы (примерно на 20%). )и особенно выбросами с уходящими газами окислов серы (если, конечно, сера содержится в топливе, что бывает сплошь и рядом) и окислов азота.

Что касается выбросов мелких частиц золы, то для борьбы с этим злом налажен массовый выпуск фильтров с КПД 95 - 99%. Можно было бы считать этот вопрос решенным, если бы на многих электростанциях, работающих на угле, фильтры не находились бы в столь безобразном состоянии, что их КПД снижается до 80% и даже еще более. Но это уже вопрос порядка, дисциплины.

С выбросами окислов серы и азота дело обстоит гораздо сложнее (Окислы серы возникают при сжигании любого топлива (угля, мазута, природного газа), если в нем содержится сера; окислы азота образуются при сжигании любого топлива тем в большем количестве, чем выше температура. ). До настоящего времени не создано эффективно действующих и дешевых фильтров. Однако необходимо отметить, что работа по созданию таких фильтров ведется энергично, и, нужно думать, она будет успешно завершена к 2000 г., а может быть, и ранее. Пока что для избежания предельных концентраций SO X и NO 2 в местах расположения электростанций строятся высокие выхлопные трубы - до 320 - 350 м.

Следует заметить, что окислы углерода, когда речь идет о тепловых электростанциях, не создают сколько-нибудь серьезных затруднений. Продукт неполного сгорания углерода СО, вредно действующий на людей даже в малых концентрациях, в продуктах сгорания ТЭС практически отсутствует. Как уже говорилось выше, причиной этого является большой избыток воздуха.

Выбросы углекислого газа СО 2 , который независимо от человеческой деятельности входит в состав атмосферы в количестве около 0,03% по объему, обращают на себя внимание главным образом с точки зрения увеличения так называемого парникового эффекта атмосферы и связанного с этим возможного повышения температуры атмосферы. Сущность парникового эффекта в том, что атмосфера Земли прозрачна для основной части излучения Солнца (в оптическом диапазоне). В атмосфере Земли излучение поглощается молекулами СО 2 , Н 2 О и другими, именно поэтому увеличение углекислоты в атмосфере Земли может привести к повышению ее (атмосферы) температуры.

К повышению температуры атмосферы и поверхности Земли может привести также увеличение производства и потребления энергии. Необходимо помнить, что вся произведенная энергия, согласно второму началу термодинамики, в конце концов превратится в тепло.

Все эти рассуждения о росте температуры атмосферы и поверхности Земли были, однако, поколеблены проведенными наблюдениями. С начала XX в. до 40-х годов среднегодовая температура повысилась приблизительно на 0,7° С, а площадь арктических льдов уменьшилась на 10%. Объясняли это увеличением концентрации СО 2 в атмосфере и ростом производства и потребления энергии.

Но за последующие приблизительно 30 лет, несмотря на рост выбросов СО 2 в 2 раза к продолжающееся увеличение производства и потребления энергии, происходило и продолжает происходить снижение температуры, которая может скоро приблизиться к уровню конца XIX в.

Что все это означает? Только то, что мы еще плохо знаем описываемые процессы. Многие считают, что до сих пор не принималось во внимание значение аэрозолей - находящихся во взвешенном состоянии мельчайших твердых частиц и капель жидкости. Рассмотрение этой гипотезы ведется.

Что касается жидкой фазы (рек, озер, прудов), то ТЭС сколько-нибудь существенно их не загрязняют. Надо только внимательно следить, чтобы нагрев воды, например пруда, не превысил допустимых пределов. В случае чего всегда есть запасной вариант - градирня. Умеренный нагрев пруда может быть даже полезным - содействовать рыбному хозяйству.

Разговор о воздействии ТЭС на окружающую среду можно было бы считать на этом исчерпанным. Но нам хочется, несколько выходя за рамки установленной программы, поставить такой вопрос: какие источники загрязнения наиболее существенны для атмосферы?

Для развитых стран, особенно для больших городов, это автомобиль. В ФРГ, например, на долю ТЭС приходится около 25% всего используемого топлива, а на долю автомобилей - около 12%. В то же время в загрязнении воздушной среды на долю ТЭС приходится примерно 9% (это, конечно, немало, но, как сказано выше, есть реальные возможности резкого снижения этой цифры), а на долю автомобилей 50%.

Дело заключается в том, что в автомобилях (с карбюраторными двигателями) плохо сжигается топливо. Автомобили имеют, в частности, в отработавших продуктах сгорания много СО и NO x .

Вслед за автомобилями большое загрязнение атмосферы приносят отопительные (особенно нецентрализованные) установки, а также выхлопные газы предприятий.

Промышленные предприятия (особенно целлюлозно-бумажной, химической и нефтехимической промышленности, цветной металлургии и некоторые другие) - главные загрязнители водных объектов. Поэтому особо большое внимание должно уделяться очистным сооружениям. Кардинальное решение проблемы - создание предприятий с использованием воды в замкнутом контуре. Переходим теперь к ГЭС. Всего несколько десятилетий назад широкое распространение получила неправильная точка зрения о том, что ГЭС якобы не могут отрицательно влиять на окружающую среду. К сожалению, как об этом говорилось выше, дело обстоит не так.

На вопрос о том, можно ли сказать, что ГЭС настолько отрицательно влияют на окружающую среду, что их не надо строить вовсе, или, наоборот, влияние ГЭС на окружающую среду настолько мало, что их ничтоже сумняшеся можно строить дальше, единого ответа дать нельзя. В некоторых конкретных случаях их строить можно и должно, а в некоторых - нет.

В наибольшей мере объективный ответ на этот вопрос зависит от характеристики будущего водохранилища. Поэтому, повторяем, ответ о целесообразности строительства каждой конкретной ГЭС должен рассматриваться самостоятельно. К важнейшим характеристикам водохранилища относятся: размер зеркала водохранилищ, наличие в водохранилищах мелководий, влияние водохранилищ на местный климат, состояние почв и растительности, а также на рыбное хозяйство и водный (речной) транспорт.

Нельзя дать каких-либо твердых цифровых показателей типа: если на тысячу установленных киловатт ГЭС приходится не более n квадратных километров зеркала водохранилища, то ГЭС строить можно, а если больше, то - нет. Надо, конечно, учитывать, насколько ценные земли (главным образом с точки зрения сельского хозяйства) будут затоплены.

Большим бедствием являются водохранилища, большую часть которых составляют мелководья. Возникают они в случаях, когда плотины ГЭС сооружаются в равнинной местности, например волжские ГЭС. Вода мелководий интенсивно прогревается солнцем, что создает благоприятные условия для развития сине-зеленых водорослей. Они в большинстве случаев не используются и, разрастаясь, гниют, заражают воду и атмосферу.

Важен также учет интересов речного судоходства. В принципе сооружение ГЭС оказывает двоякое воздействие на судоходство: повышение глубины реки в верхнем бьефе, что для судоходства выгодно, и необходимость (при сквозном движении судов) сооружения шлюзов, что влечет за собой дополнительные капиталовложения.

Два обстоятельства главным образом влияют на рыбное хозяйство. Во-первых, это касается так называемых проходных рыб, совершающих в период нереста миграцию из морей в реки, например из Каспийского моря в Волгу. Воздвижение плотин на пути их миграции может привести к ликвидации очень денных проходных рыб. Попытки создать специальные устройства для миграции проходных рыб пока к успеху не привели.

Во-вторых, дело заключается и в том, что уровень воды в реках, на которых построены плотины ГЭС, подвержен колебаниям, определяемым электрической загрузкой ГЭС и, следовательно, количеством воды, которая должна протекать через ее турбины. Нередки случаи, когда выметанная рыбами икра вблизи поверхности реки гибнет (засыхает) вследствие понижения уровня воды.

Вопросы безопасности ядерных реакторов были рассмотрены выше. Здесь нам остается добавить очень немного. Реакторы ВВР второго поколения, о которых также уже говорилось, должны обладать так называемой внутренней безопасностью.

Это значит, если возникнет аварийная ситуация, а эксплуатационный персонал произведет неправильные действия, реактор все равно остановится.

женская одежда оптом от производителя больших размеров

Любая деятельность человека, требующая произ­водства энергии и ее превращения в форму, пригодную для конеч­ного использования в жилищах, на предприятиях или в средствах транспорта, оказывает побочные влияния, которые при достижении определенного уровня наносят ущерб одному или нескольким аспектам окружающей среды. Это, конечно, так, но справедливо также и то, что человек может регулировать уровень побочных влияний. Такие влияния, прежде всего, возникают на тепловых элек­трических станциях, преобразующих энергию различных видов органического топлива в электрическую. Здесь необходимо найти пути уменьшения вредных выбросов в атмосферу газов и твердых частиц и уменьшения теплового загрязнения воды в реках и озерах.

Гидроэлектростанции долгое время считались чистыми и безвредными предприятиями, однако затем они стали подвергаться справедливой критике из-за затопления обширных территорий, необходимости переносить населенные пункты. Создание искусствен­ных водоемов приводит к резкому изменению экологии района, из­менению давления на сушу и уровней грунтовых вод, что отрица­тельно сказывается на близрасположенной флоре и фауне. Замед­ление течения рек из-за сооружения плотин электростанций ведет к загрязнению воды, появлению вредных сине-зеленых водорослей, способствует размножению бактерий, несущих эпидемии, наруше­нию половодий и исчезновению вследствие этого заливных лугов, в некоторых случаях происходит засоление почвы (например, вбли­зи Астрахани).

Рис. 1. Загрязнение атмосферы электростанциями различного типа

Объемы загрязнений тепловыми электростанциями окружающей среды и вид загрязнений зависят от типа и мощности станций. На рис. 1 приведены показатели загрязнений окружающей среды станциями различного типа мощностью по 1 ГВт каждая. Выбросы в атмосферу газов и золы даны на рисунке в тоннах в сутки, а ак­тивность радиоактивных элементов в секундах в минус первой сте­пени. Станции, работающие на угле, потребляют его в больших количествах и больше всего выбрасывают загрязняющих атмосфе­ру веществ. Выбросы в атмосферу зависят откачества угля. При­веденные на рисунке характеристики соответствуют углю средней калорийности.

Атомные электростанции, долгое время бывшие объектами тща­тельных наблюдений, практически не оказывают вредного влияния на биосферу при условии, что решается проблема безопасного сохранения радиоактивных отходов.Относящийся к ним знак во­проса на рис. 1 расшифровывается в зависимости от решений, проблемы радиоактивных отходов. Английские атомные станции сбрасывали радиоактивные отходы в Северное море, что, конечно, недопустимо и осуждалось мировой общественностью. Иногда ра­диоактивные отходы в специальных контейнерах опускаются на дно морей и океанов. В этом случае, однако, не исключается полно­стью опасность заражения воды. Поэтому выбросы радиоактивных отходов в моря и океаны вызывают резкие протесты со стороны стран, расположенных на побережье.



В порядке курьеза можно вспомнить, что в прошлом, когда появились первые ядерные реакторы, некоторые специалисты в США предлагали сбрасывать радиоактивные отходы на дно Чер­ного моря. Выбор пал на Черное море, поскольку в нем наиболее медленно происходит циркуляция воды между верхними и нижними слоями. Нижние слои достигают поверхности примерно за 100 лет. Совершенно ясно, что такое предложение не могло считаться удовлетворительным и было категорически отклонено. В действительно­сти достаточно безопасно можно хранить радиоактивные отходы под землей в жидком состоянии в специальных резервуарах или предварительно зацементированными. При цементировании дости­гаются две цели: улучшается защита отходов и уменьшается их объем.

Перспективно так называемое «отвердение» жидких радиоак­тивных отходов путем их нагрева и выпаривания. При существую­щей технологии 1000 л жидких отходов с высоким уровнем радио­активности можно переработать в менее чем 0,01 м 3 твердых отхо­дов. Твердые отходы помещаются в герметические металлические контейнеры. Такие контейнеры удобно хранить в соляных шахтах глубоко под землей, так как в мощные соляные пласты не прони­кают грунтовые воды и вследствие их пластичности уменьшается опасность появления трещин и разрывов во время землетрясений. Доля электроэнергии, вырабатываемой на атомных электростан­циях, с течением времени будет возрастать по мере увеличения их единичных мощностей. Зависимости удельных расходов на выра­ботку 1 кВт·ч электроэнергии (з ) от мощности (Р) тепловых и атомных станций приведены на рис.2.



Начиная примерно с 1000 МВт, а по послед­ним данным даже с мень­ших мощностей, оказы­вается экономически вы­годнее строить и эксплуа­тировать именно атомные электростанции, а не теп­ловые. Развитие всех электрических станций идет по пути увеличений мощностей единичных агрегатов, и поэтому в относи­тельно недалекой перспек­тиве следует ожидать широ­кого применения атомных станций. При достаточно больших мощностях они экономически значительно более выгодны. Увеличение мощностей агрегатов стан­ций, непрерывное совершен­ствование конструкций при­водят к относительному уменьшению необходимых площадей s и объемов v, приходящихся на 1 кВт установленной мощности (рис. 3). Резкое уменьшение объемов, требуемых для энергоустановок в 70-е годы (штриховая линия), происходит за счет использования закрытых конструкций, заполненных электроизолирующим газом, в которые помещают электрооборудование и в которых может быть сущест­венно уменьшено расстояние между токоведущими частями.

Рис. 2. Экономические показатели работы АЭС и ТЭС

Более крупные станции обладают лучшими техническими харак­теристиками, они в большей степени поддаются автоматизации и механизации процессов, что позволяет существенно повышать мощ­ности Р, приходящиеся на одного человека обслуживающего персо­нала. Все это, в конечном счете, облегчает решение проблемы со­кращения расходования обжитой территории.

В настоящее время уменьшение вредного влияния различных технических устройств, в том числе и энергетических, приобрело решающее значение при установлении их характеристик. Большие возможности уменьшения вредного влияния энергетики на биосферу безусловно заключаются в использовании электростанций, работающих на ядерном горючем. Этот путь уже сейчас весьма эффективен и будет еще более эффективен, когда в отдаленном будущем появится возможность использовать для целей энергетики управляемую реакцию термоядерного синтеза.

Уже сейчас к атомным электростанциям предъявляют весьма высокие требования в отношении надежности, так как аварийные нарушения в их работе могут сопровождаться интенсивным зара­жением окружающей местности. Так, при аварии на одной из анг­лийских атомных станций произошло заражение травы и близ рас­положенной местности, Из-за чего молоко в течение нескольких месяцев было непригодно к употреблению.

В отношении безопасности работы атомных станций имеются весьма пессимистические высказывания ряда зарубежных ученых. Американский ученый Брэнд Барнаби считает, что развитие ядер­ной энергии создает потенциальную угрозу для жизни всего чело­вечества, так как каждая атомная станция производит радиоак­тивный стронций в таком количестве, которого достаточно, чтобы все человечество получило дозу облучения, превышающую мак­симально допустимый уровень. Один инцидент на атомной станции равносилен бесчисленному множеству природных ка­тастроф.

Рис. 3. Изменение во времени характе­ристик энергоустановок

Под давлением со стороны общественных кругов США в некото­рых штатах создаются затруднения в выделении площадей под атомные станции - их намечают сооружать на баржах в океане.

Советские специалисты считают, что атомные электростанции при надлежащей их конструкции безопасны и не загрязняют окру­жающую среду. В нашей стране не разрешается выбрасывать ра­диоактивные отходы в атмосферу, моря и океаны. Радиоактивные отходы проходят обработку в очистительных сооружениях, где уро­вень радиации снижается до допустимых санитарными нормами величин, а затем подвергаются цементированию и укладыванию в специальные железобетонные сооружения.

Атомная энергетика в нашей стране развивается большими тем­пами, причем одновременно создаются эффективные средства защи­ты и повышается надежность станций. Атомные станции сооружа­ются в Советском Союзе во многих местах, в том числе и вблизи таких крупных городов, как Ленинград, Ереван и др. Существую­щая надежность их работы такова, что практически исключается опасность для жизни и здоровья людей.

Загрязнения окружающей среды почти не происходит при выра­ботке электроэнергии на станциях, использующих геотермическую энергию, энергию солнечной радиации, а также энергию ветра и приливов.

Таким образом, среди всех видов электрических станций тепло­вые станции, работающие на органическом топливе, более всего загрязняют атмосферу. В ряде стран современная техническая политика снижения загрязнений, в том числе наибольшего рассеи­вания выбросов на тепловых станциях, последовала после принятия специальных законодательных мер в отношении допустимого уров­ня загрязнения. Проблема газоочистки приобретает особую акту­альность и на ее решение расходуются значительные средства. Например, общие затраты за последние 5-6 лет в США на иссле­довательские работы по очистке дымовых газов составили 100 млн. долл. В настоящее время трудно точно оценить затраты на очисти­тельные сооружения. По предварительным прогнозам, при исполь­зовании современных технологических систем газоочистки они составят 30-70 долл./кВт. Так, например, для энергетического блока мощностью 550 МВт на ТЭС «Widow’s Creeck» стоимостью 65 млн. долл. запроектирована газоочистительная установка стои­мостью 35 млн. долл. Иными словами, расходы по уменьшению вы­бросов вредных веществ в атмосферу составляют более 50 % от стоимости энергоблока.

Современные газоочистительные установки позволяют в значи­тельной мере ограничить выброс. вредных веществ в атмосферу (рис. 4).

В случае, приведенном на рис. 4, а, отсутствуют газоочисти­тельные сооружения и применяется низкокачественное топливо. Ис­пользование природного газа для топок, а также установка очисти­тельных сооружений позволяют добиться больших успехов в оздо­ровлении окружающей среды (рис. 2.8, б) .

Рис. 4. Уменьшение загрязнения воздуха с помощью очи­стительных сооружений: а и б - до и после включения очистительных сооружений соответ­ственно

В связи е большими расходами на очистительные сооружения остро возникает вопрос об источниках финансирования. По мнению ряда зарубежных специалистов из капиталистических стран, реше­ние вопроса заключается в повышении цен на первичные энергоре­сурсы (нефть, уголь, газ).

Уменьшения загрязнения атмосферы намечается достичь также за счет ограничения в энергопотреблении, которое станет возмож­ным при увеличении эффективности использования энергии. Так, предполагается, что улучшение теплоизоляции жилых, производст­венных и прочих сооружении позволит примерно в два раза сокра­тить расходы на отопление и кондиционирование воздуха.

Помимо загрязнения атмосферы в ряде стран нормируется теп­ловое загрязнение электростанциями водоемов, что вызывает не­обходимость в дополнительных расходах на охлаждение воды.

Сбросы горячей воды в водоемы ио повышение вследствие этого их температуры приводят к нарушению экологического равновесия, установившегося в естественных условиях, что неблагоприятно влияет на флору и фауну.

Следует отметить, что в некоторых случаях можно извлечь пользу от повышения температуры водоемов, например, разводя в таких водоемах рыбу, приспособленную к повышенной темпера­туре. В результате введения новых норм на АЭС «Вгоwп Ferry» (США) в процессе ее строительства пришлось проектировать и ус­танавливать дополнительные сооружения по охлаждению воды, на которые потребовалось 36 млн. долл. I

Тепловое загрязнение водоемов может быть уменьшено с пере­ходом на замкнутые циклы использования воды.

При сооружении гидроэлектростанций необходимо учитывать весь комплекс проблем, связанных с изменением экологической сре­ды, затоплением территории, влиянием на самые различные отрас­ли народного хозяйства. ­

Передача электрической энергии на расстояние в основном осу­ществляется по проводам воздушных линий, которые распростра­няются на многие километры и под которые отводится большая площадь «отчуждения». Линии электропередач создают электромагнитные излучения, вызывающие помехи в работе систем связи.

Иногда высказываются суждения о том, что линии электропередач портят ландшафт местности. Эти суждения в какой-то мере справедливы, но, возможно, часто они носят временный и сугубо субъективный характер. Можно вспомнить, что сразу же после сооружения Эйфелева башня в Париже многими современниками воспринималась как уродливое строение, в то время как сейчас она символизирует Париж и воспринимается как одно из лучших его украшений.

Существующее вблизи проводов высоковольтных линий элект­ропередач электромагнитное поле неблагоприятно действует на организм человека. Исследования показывают, что в нормальном че­ловеческом организме величина заряда меняется с периодами в 6 часов и 27 суток. И на этот процесс окружающее электромаг­нитное поле оказывает заметное влияние. Существует определенная связь между магнитными бурями и состояниями больных с сердечно-сосудистыми заболеваниями. Радиоволны с некоторыми частотами оказывают разрушительное влияние на живые клетки. На­пример, имеются данные о том, что при частоте излучений 27 мГц гибнет ряд растений и животных. По мнению биологов, жизнь ­- это тонкий электрический процесс. Возле электромагнитного поля могут изменяться электрохимические, а следовательно, и любые биохимические процессы в клетках. В то же время ни у растений, ни у животных не удалось обнаружить специальных магниточувстви­тельных органов. Однако несомненно, что магнитные и электриче­ские поля оказывают некоторое (не вполне ясное на сегодня) влияние на все живые организмы. .

Влияние сильных электромагнитных полей (изменяющихся с промышленной частотой 50 Гц) на человека к настоящему вре­мени пока мало изучено. Проведенные в нашей стране и за рубе­жом исследования показали, что сильное электромагнитное поле вызывает функциональное нарушение сердечно-сосудистой системы и нарушения невралгического характера. Вредные воздействия на человека сильных полей были замечены при вводе в эксплуатацию высоковольтных подстанций напряжением 400-750 кВ. Повторяю­щееся электромагнитное облучение человека приводит к накапли­вающимся (кумулятивным) эффектам, пока еще также не вполне изученным. Однако уже очевидно, что вредные последствия пребы­вания человека в сильном электромагнитном поле зависят от на­пряженности Е поля и от продолжительности его воздействия Т. Чем больше напряженность поля, тем меньшая продолжительность пребывания в нем человека допускается (рис. 5). При 20 кВ/м воздействие поляпроявляется немедленно в виде неприятных ощу­щений и последующих расстройств функций ор­ганизма. При 5 кВ/м не­приятных проявлений не наблюдается. Величина напряженности поля уменьшается с увеличе­нием расстояния от ис­точников излучения по­ля - проводов. Весьма важно установление до­пустимых безопасных расстояний от линий электропередач высокого напряжения до жилых по­строек.

При больших величинах напряженности электрического поля необходимо применять специальные защитные мероприятия, напри­мер использовать защитные экранирующие костюмы, сетки, умень­шающие эффект поля, и т. д.

Чтобы уменьшить расходы земли под полосы «отчуждения», ис­пользуют кабельные линии при вводах электропередач в крупные города. В энергетике перспективно применение сверхпроводящих и криогенных линий электропередачи. Сопротивление проводов та­ких линий близко к нулю, что позволяет использовать низкое на­пряжение и решить проблему изоляции проводников.

Громоздкие открытые распределительные устройства, занимаю­щие большие территории в городах, в будущем могут сооружаться закрытыми, наполненными изолирующим газом и расположенны­ми под землей.

Размещение электростанций по территории страны должно осу­ществляться с учетом загрязнения ими окружающей среды. Очевид­но, что станции, работающие на низкосортном топливе и наиболее интенсивно загрязняющие атмосферу, должны проектироваться вдали от крупных населенных пунктов. В некоторых странах элект­ростанции строятся в морях и океанах для устранения их вредного влияния на окружающую среду и в конечном счете на человека. В Японии и США уже выполнены проекты сооружения ТЭС и АЭС в море в 5-30 км от берега. Разработаны различные проекты выполнения этих станций: плавучими, на опорных конструкциях и по­груженными в воду в специальных сферических помещениях.

Рис. 5 Воздействие электромагнитного поля на живые организмы

Рис. 6. Схема установки для переработки мусора в топливо

Современная цивилизация сталкивается с проблемой переработ­ки огромных потоков отходов, количество которых с каждым годом возрастает в угрожающих масштабах. Отходы в виде свалок из груд ржавеющего металла, бумаги, дерева, картона, пластмасс ста­новятся неизменными спутниками пригородных ландшафтов. По­мимо твердых отходов увеличиваются выбросы в реки и водоемы жидких отходов. По предварительным подсчетам, в США общий объем жидких отходов к 2000 г. будет примерно равен объему всех рек в континентальной части страны. Только одним жителем стра­ны в течение суток выбрасывается в канализационную систему в среднем около 500 л жидких отходов.

По подсчетам, опубликованным в США в 1971 г., в 100 крупней­ших городах этой страны образовался 71 млн. т органических твер­дых отходов. Из этого количества можно было бы получить19,6 млрд. м 3 метана, пригодного для самых различных энергети­ческих целей.

Из органических твердых отходов, содержащих метан, газы можно получать тремя способами: путем анаэробного разложения, гидрогазификации и пиролитической конверсии.

Есть предложения построить завод, который будет вырабаты­вать из 0,5 т городского мусора 1500 кубических футов метана (1 кубический фут равен 0,028 м 3) в день. Стоимость производства метана на таком заводе составит около 1 долл. за миллион британ­ских единиц тепла (1 Вtu = 1,055 кДж) .

Мусор сначала должен измельчаться для получения однород­ных по размерам частиц, а после извлечения черных металлов с по­мощью мощных магнитов разделяться в воздушном «классифика­торе». Образовавшийся газ будет содержать 50-60 % метана и двуокись углерода и может использоваться в качестве топлива с низкой теплотворной способностью. Чтобы повысить теплотвор­ную способность, из него можно удалить двуокись углерода.

Шлам (лигнин, пластмассы, непереработанная целлюлоза) после фильтрования будет превращаться в брикеты, занимающие в два раза меньший объем, чем исходные материалы до загрузки в автоклав. Эти брикеты можно использовать как топливо на промыш­ленных предприятиях.

Проводятся эксперименты по получению метана из мусора или навоза путем гидрогазификации. Гидрогазификация предусматри­вает реагирование содержащих углерод веществ с водородом с образованием газа, состоящего в основном из метана. Реакция проходит с выделением тепла, что позволяет превращать городской мусор, содержащий большое количество влаги, в газ без дополни­тельного нагрева.

Как показали эксперименты, рассмотренным путем из обычного городского мусора можно получать газ, содержащий 70 % метана, а также этан и водород. При переработке навоза получается газ с 93 % -ным содержанием метана. Стоимость производства такого газа составляет менее 1 долл. за миллион британских единиц тепла.

Одна из американских фирм использует бактериальные топлив­ные элементы для получения из органических отбросов электро­энергии и метана. Электрический ток ионизирует воду, разлагая ее на кислород и водород. Водород, органические отбросы и метан направляются в пиролитический конвертор для производства «сы­рой нефти», горючего газа с теплотворной способностью 500 британ­ских единиц тепла на кубический фут, древесного угля и дегтя.

Результаты лабораторных испытаний показывают, что есть воз­можность получить из 1 т мусора 10-15 тыс. кубических футов га­за, содержащего 50 % метана.

Во многих городах США созданы или создаются установки для переработки отходов в сырье или энергию. Так, в Балтиморе по­строена установка для пиролиза тысяч тонн мусора в день с целью выработки тепла, которое будет использоваться в теплофикацион­ной сети. В Чикаго к концу 1976 г. закончилось строительство ус­тановки для переработки в топливо 1 тыс. Т мусора в день. После пуска этой установки город экономит на топливе 2 млн. долл. в год.

Около 300 американских городов с населением более 10 тыс. человекв течение ближайших 5 лет намерены осуществить проекты утилизации мусора. Теплотворная способность мусора составляет 13,4 МДж на 9,8 Н. Всего по стране в мусоре содержится количест­во энергии, равное 1,5 % общего потребления энергии в США.

Природные возможности естественной переработки и вторичного использования отходов весьма ограничены. Поэтому перед челове­ком возникает настоятельная необходимость в эффективной пере­работке и вторичном использовании отходов, которая явилась как бы развитием естественных свойств природы. Решение этой проблемы возможно будет лишь в том случае, если удастся полу­чить очень дешевый источник энергии практически неограниченной мощности. Наиболее реальна перспектива переработки отходов в термоядерной «горелке». Если в поток плазмы с температурой порядка 100000 0 С, создаваемой в термоядерном реакторе, помес­тить обычное вещество, то в нем произойдет разрушение всех мо­лекулярных связей и частичная ионизация. Перерабатывая отходы в термоядерной горелке, можно будет получать сверхчистые метал­лы, неметаллические вещества, газы и т. д. Реализация таких про­ектов, однако, дело отдаленного будущего. Тем не менее уже сегодня в этом направлении ведутся научные исследования.

.

Энергетический ресурс (или энергоресурс) - это носитель энергии, энергия которого используется или может быть использована при осуществлении хозяйственной и иной деятельности, а также вид энергии (атомная, тепловая, электрическая, электромагнитная энергия или другой вид энергии).

Классификация энергоресурсов:

  • 1. Первичные энергетические ресурсы - это энергия природного происхождения (природное топливо, энергия водных ресурсов, энергия солнца и ветра и др. виды)
  • 2. Вторичные энергетические ресурсы - это энергия, образующаяся в результате переработки или преобразования различных видов топлива, а так же в результате производственных процессов (продукты нефтепереработки, отработанный пар, отходы тепла, сбереженная энергия и др. виды)
  • 3. Топливные энергетические ресурсы - это энергия различных видов топлива (каменный и бурый уголь, нефть, горючие газы, горючие сланцы, торф, дрова и др. виды)
  • 4. Нетопливный энергетический ресурс - это энергия энергия, образующаяся без участия топлива (электрическая энергия, электромагнитная энергия, энергия солнца и др. виды)
  • 5. Возобновляемый энергетический ресурс - это ресурс, запас которого непрерывно возобновляется природой (энергия солнца, энергия вод, энергия приливов, геотермальная энергия, тепловая энергия земли, воздуха, воды, биомасса и др. виды)
  • 6. Невозобновляемый энергетический ресурс - это ресурс, запас которого принципиально исчерпаем (минеральное топливо, уран и др. виды)

Влияние энергетики на окружающую среду

Воздействие энергетики на окружающую среду весьма разнообразно и определяется в основном типом энергоустановок.

Рассмотрим основные особенности воздействия на окружающую среду электростанций традиционного типа:

1. Воздействие ТЭС на окружающую среду зависит от используемого топлива. При сжигании твердого топлива в атмосферу поступает летучая зола с частицами не до горевшего топлива,сернистый и черный ангидрида,оксиды азота,фтористые соединения.

При снижении жидкого топлива с дымовыми газами в атмосферный воздух поступают сернистый и серный ангидрид, соединения ванадия, солей натрия и также вещества, удаляемые с поверхности котлов при очистке.

При сжигании природного газа основным загрязнителем атмосферы являются оксиды азота.

Выработка 1млн. кВт/ч электроэнергии на тепловых электростанциях спровождается выбросом 10т золы и 15т сернистого газа.

2. Для сооружения крупных ТЭС в среднем необходима площадь около 2,3 кмІ , не считая золоотвалов и водохранилищ охладителей, а с их учетом 3-4 кмІ . На этой территории изменяется рельеф местности, структура почвенного слоя и экологическое равновесия.

Крупные градирни существенно увлажняют микроклимат в районе станции, способствуют образованию низкой облачности, туманов, снижению солнечной освещенности, вызывают моросящие дожди, ав зимнее время иней и гололед. ТЭС сбрасывают в водоемы большое количество теплоты, повышают температуру воды и оказывают влияние на форму и среду водоемов.

  • 3. Для ГЭС необходимо сооружать водохранилища, что приводит к затоплению огромных территорий. Структура теплового баланса прибрежных территорий водохранилищ и непосредственно водной поверхности, влияющая на температуру воздуха на побережье, различна по сезонам года и времени суток и зависит от площади поверхности, глубины водоема и характера воздушных течений в этой зоне. Поэтому вопросы экологического воздействия ГЭС на окружающую среду должна составлять важнейший аспект предпроектного анализа.
  • 4. По вопросу воздействия АЭС на окружающую среду существуют различные мнения. Однако, не вызывает сомнения тот факт, что эксплуатация АЭС позволяет заметно снизить уровень загрязнений окружающей среды компонентами, характерными для работы тепловых станций (CO, SO2, NOx и т.п.).

Основными факторами загрязнения среды здесь выступают радиоационные показатели: активированные пылевидные частицы, попадающие через вентиляционные каналы за пределами станции. Радиация о охлаждающей воды, проникающая радиация через корпус реактора, тепловые воздействия на воду охлаждения и, конечно же, захоронение отходов.

Чистая окружающая среда является ограниченным ресурсом наряду с трудом, капиталом и знаниями. Топливно-энергетический комплекс занимает ведущее место по степени воздействия на окружающую природную среду среди объектов техногенного воздействия. Специфика объектов ТЭК как источника загрязнения окружающей среды характеризуется высокой пожаро- и взрывоопасностью добываемых и транспортируемых продуктов, значительной удаленностью потребителей от производителей, а, следовательно, большой протяженностью систем транспорта энергоресурсов, изменчивостью природного ландшафта, климатических, геокриологических и др. условий, в которых строятся и эксплуатируются объекты комплекса. Энергетические предприятия оказывают значительное влияние и на климат планеты, поскольку выбрасываемые ими в атмосферу вещества способствуют деградации озонового слоя Земли и нарастанию парникового эффекта: 70% парниковых газов поступают в атмосферу с выбросами предприятий ТЭК.

Исследованием проблем топливно-энергетического комплекса России и его взаимодействием с окружающей средой занимаются многие отечественные и зарубежные специалисты. Основной целью этих исследований является выработка направлений снижения отрицательного воздействия ТЭК на окружающую среду при прогнозировании его развития.

Функционирование ТЭК сопровождается образованием различных типов отходов, которые проявляются в виде выбросов в атмосферу, сбросов загрязненных сточных вод и жидких отходов, образованием твердых отходов. Оказывая значительное воздействие на окружающую среду, ТЭК является также источником техногенной опасности возникновения аварий и чрезвычайных ситуаций в результате значительного износа основных фондов, что обусловливает загрязнение природной среды по всем перечисленным направлениям.

Рассмотрим три основных направления воздействия ТЭК на объекты окружающей среды:

ВОЗДУХ → Выбросы в атмосферу

ВОДА → Сброс загрязненных сточных вод

ЗЕМЛЯ → Твердые отходы

Анализ воздействия основных секторов ТЭК по каждому направлению показывает, что за период 2005-2015 г. наблюдалась устойчивая тенденция сокращения выбросов загрязняющих веществ отраслями ТЭК и промышленностью в целом, при росте доли ТЭК в общих выбросах промышленности. Объемы выбросов загрязняющих веществ в атмосферный воздух от стационарных источников промышленности уменьшились почти в 2 раза, по ТЭК – в 1,8 раза, доля отраслей ТЭК возросла с 44,8% до 48,8%. По объемам сброса загрязненных сточных вод в поверхностные водоемы отмечается аналогичная тенденция: снижение объемов сброса загрязненных вод на 43% и увеличение доли ТЭК в структуре выбросов промышленности с 22% до – 24%. Начавшийся рост промышленного производства в 2015 г. происходил в условиях сокращения валового выброса вредных веществ в атмосферу от стационарных источников: в целом по Российской Федерации на 0,7% (до 18,5 млн. т) по сравнению с 2014 г.

Крупными источниками загрязнения окружающей среды являются нефтегазовые месторождения и магистральные газопроводы, где основными загрязняющими компонентами являются нефть и ее пары, сточные воды, а также продукты сгорания.

Рассмотрим воздействие отраслей ТЭК на основные сферы окружающей среды.

1. Выбросы загрязняющих веществ в атмосферу

· Электроэнергетика

По суммарным выбросам загрязняющих веществ в атмосферу «лидирует» электроэнергетика, ее доля в суммарных выбросах стационарными источниками промышленности за рассматриваемый период превысила 25% и достигла в 2015 г. 26,8%. В 2015 г. выбросы ЗВ составили 3,9 млн. т, что ниже уровня 2014 г. на 56 тыс. Сохранение устойчивой тенденции сокращения выбросов обусловлено увеличением до 64% доли природного газа в структуре ТЭБ; повышением экологической культуры эксплуатации тепловых станций - внедрение эффективных золоулавливающих установок; введением в действие ГОСТа (Р50831-95), устанавливающего нормативы удельных выбросов для вновь вводимых котельных установок на уровне мировых стандартов.

Нефтедобывающая промышленность макроэкономический анализ: методы и результаты.

Объемы выбросов ЗВ в атмосферу сократились за 2005-2015 гг. в 1.8 раза, однако доля отрасли в выбросах промышленности в 2015 г. превысила уровень 2005 г. и составляла 9% от выбросов стационарными объектами промышленности. Основными ЗВ в нефтедобывающей промышленности являются углеводороды – 48%, оксид углерода – 44% и твердые вещества – 4,4%. Рост доли нефтедобычи в выбросах промышленности обусловлен в значительной степени сжиганием в факелах добываемого попутного газа. В настоящее время в целом по отрасли в факелах сжигается около 20% всего добываемого попутного газа, на отдельных месторождениях ОАО «Томскнефть», «ВНК», ОАО «НК «Юкос» этот показатель достигает 70%, что связано с незначительным объемом ресурсов попутного газа на отдельных месторождениях, а также их удаленностью от потребителей.

Эффективным решением проблемы утилизации попутного газа является его использование на малогабаритных газогенераторных электростанциях, что позволит обеспечить потребности промыслов в электроэнергии и снизить эмиссию парниковых газов. Для улучшения экологической ситуации в нефтедобыче требуется ремонт и замена устаревшего оборудования добывающих предприятий, внутрипромысловых трубопроводов, использование труб с повышенными антикоррозийными свойствами. Решение этой проблемы, на наш взгляд, требует разработки и принятия соответствующей законодательной базы, а также федеральной Программы утилизации попутного нефтяного газа на объектах ТЭК.

В нефтепереработке состав основных ЗВ тот же, что и в нефтедобыче, их общее количество сократилось к 2015 г. почти в 2 раза до 748 тыс. т. Доля отрасли составляет 5% от выбросов промышленности.

· Газовая промышленность

Объемы выбросов ЗВ в атмосферный воздух от стационарных источников за 2005-2015 гг. сократились более чем в 3 раза. Доля отрасли в общем объеме выбросов промышленности также сократилась на 1% и составила в 2015 г. 3%. Следует отметить, что несмотря на незначительное уменьшение уровня добычи природного газа в 2015 г. (составил 590 млрд. м 3) и проводимую работу по снижению загрязнения атмосферного воздуха, выбросы ЗВ по газовой промышленности увеличились на 6,5% и составили более 456,3 тыс. т. Основной причиной являются аварии на магистральных газопроводах, происходящие вследствие старения оборудования. В 2015 г. в отрасли произошло 26 аварий. Наблюдается увеличение углеродов до 70,6% в общем объеме выбросов ЗВ, что обусловлено преимущественно ростом выбросов метана до 9%, который является одним из «парниковых газов». Эмиссия метана и углекислого газа в газовой отрасли происходит на всех стадиях технологического процесса. Доминирующее влияние оказывает газотранспортная система, на долю которой приходится 70% всех выбросов.

Согласно расчетам специалистов ОАО "Газпром" потери метана в газовой промышленности России колеблются от 1,03 до 1,54% и в среднем составляют примерно 1,3% от объема добычи природного газа . Доля потерь газа из распределительных газопроводов ОАО "Газпром" составляет 25 - 29% от суммарной эмиссии метана по отрасли в целом (в США в 2005 – 2015 гг. она составляла 24-43%), потери природного газа в атмосферу для различных подземных хранилищ газа находятся в интервале 0,7 - 3% от активного объема хранимого газа .

В настоящее время в газовой промышленности реализуется международный ―Проект снижения выбросов парниковых газов при производстве и потреблении метана в России, а также специальная программа работ по снижению потерь на период до 2005 г. Прогнозируется, что реализация предусмотренных мер позволит снизить потери природного газа на 3 млрд. м 3 .

· Угольная промышленность

В рамках реструктуризации угольной промышленности, проводимой с 2011 г., ликвидируются нерентабельные производства, ведется реконструкция и техническое перевооружение ряда перспективных шахт в Кузбассе, в республике Коми, на Дальнем Востоке и в Ростовской области. В результате выбросы в атмосферу вредных веществ за макроэкономическийанализ: методы и результаты: рассматриваемый период снизились в 2,4 раза, при росте доли отрасли в выбросах промышленности с 0,8% до 3,8%. В 2014-2015 г. общий объем выбросов ЗВ в атмосферный воздух увеличился на 2% и составил более 614 тыс. т, что было обусловлено ростом добычи угля на 7,7%, а также значительным увеличением сжигания метана в отвалах. Ресурсы метана в шахтных забоях возросли до 400 млн. м 3 , в этой связи увеличилось количество взрывоопасных ситуаций и реальных аварий на угольных шахтах, в 2015 г. горело около 60 отвалов.

Общие ресурсы метана в Кузбассе по оценкам экспертов составляют 10-13 трлн. м 3 (газовыделение углей составляет 20-25 м 3 на 1 т угля), промышленные запасы метана Печорского угольного бассейна достигают 2 трлн. м3. Использование метана угольных пластов в энергетике позволит снизить затраты на теплоснабжение и улучшить экологическую ситуацию за счет отказа от сжигания угля. Уголь содержит наибольшее количество серы по сравнению с другими энергоносителями - 0,2-7%, в нефти и мазуте ее содержание почти в 2 раза меньше – 0,5-4,0%, дизельное топливо содержит 0,3-0,9%, а в природном газе сера практически отсутствует .

2. Сброс загрязненных сточных вод.

· Электроэнергетика

Электроэнергетика потребляет около 70% общего объема воды, используемой промышленностью. Отрасль является лидером по суммарным выбросам загрязняющих сточных вод в поверхностные водоемы, ее доля в 1999 г. была на уровне 2005 г. и составляла 15,4%. Объем сброса загрязненных сточных вод 2005-2015 гг. сократился в 1,8 раза, в т.ч. за 2015 г. - на 31%, несмотря на увеличение выработки электроэнергии и потребления свежей воды на 500,3 млн. м 3 . Снижение выбросов обусловлено в значительной степени повышением экологической культуры эксплуатации тепловых станций, а также увеличением доли природного газа в структуре ТЭБ.

· Угольная промышленность

Сброс сточных вод за рассматриваемый 9 –летний период сократился почти в 1,5 раза и составил 396 млн. м3, что на 12% меньше уровня 2014 г. Доля отрасли в общем объеме сброса загрязненных сточных вод в поверхностные водоемы промышленностью возросла с 4,5% в 1991г. до 6,1% в 2015г.

· Нефтеперерабатывающая промышленность

Доля отрасли в объеме сброса загрязненных сточных вод промышленностью в 2013-2015 гг. оставалась на уровне 2005 г. и составляла 2,6%. За рассматриваемый период произошло снижение сброса почти в 2 раза. В 1999 г. отраслью сброшено в поверхностные воды на 11% меньше загрязненных сточных вод (164,4 млн. м 3) в сравнении с уровнем предыдущего года, что достигнуто в результате увеличения объемов использования очищенных стоков.

· Газовая промышленность

Отрасль потребляет и сбрасывает в поверхностные воды незначительное количество загрязненных сточных вод, ее доля составляет около 0,05% от объемов сброса промышленностью в целом. К 2015 г. объем загрязненных сточных вод уменьшился в 1,5 раза по сравнению с 2005 г. и составил 3,15 млн. м 3 . При этом общий объем водопотребления сократился в 2 раза.

· Нефтедобывающая промышленность

В отрасли за анализируемый период произошло сокращение сброса загрязненных сточных вод в 5,5 раза, в т.ч. за 2014-2015 гг. почти в 5 раз. При этом доля отрасли сократилась с 0,2% в 2015 г. до 0,07% к 2005 г. За 2015 г. на 18% снизилось общее количество использования воды в результате проведения политики водосбережения при поддержании пластового давления (снижение закачки свежей воды), мероприятий по оптимизации схемы водного хозяйства, увеличения повторно-последовательного использования воды. Загрязнение поверхностных вод и питьевых источников происходит также вследствие разливов нефти и нефтепродуктов, что в значительной степени макроэкономический анализ: методы и результаты обусловлено старением трубопроводов, повышенной обводненностью нефтяных пластов, наличием сероводородных примесей. В 1999 г. общее количество порывов на межпромысловых и внутрипромысловых трубопроводах достигло 53,8 тыс. случаев.

3. Твердые отходы

Угольная промышленность является "лидером" среди отраслей ТЭК России по выбросу в атмосферу твердых веществ. Значительные выбросы угольной пыли происходят при транспорте угля и составляют 15 кг/т у.т. На угольных разрезах Кузбасса ежегодно в атмосферу поступает более 238 тыс. т пылевидных частиц.

В электроэнергетике основная часть твердых отходов связана с золошлаковыми отходами, в 2015 г. их количество составило 2,4 млн. т., при общем количестве порядка 40 млн. т, на основе данных ).

На предприятиях нефтедобывающей промышленности в 2015 г. образовалось 604 тыс. т твердых отходов, в нефтепереработке – 696,8 тыс. т, что на 19% больше уровня 2014 г., из которых 37,1% - нефтяные шламы.

В добыче газа за 2015 г. объем твердых отходов составил 143 тыс. т, часть которых обезврежена, передана другим предприятиям и размещена в местах постоянного хранения.

Аварийные и чрезвычайные ситуации

Одной из основных проблем ТЭК является загрязнение ОС в результате аварийных и чрезвычайных ситуаций. По данным Госгортехнадзора за 2011-2013 гг. на нефтегазовых месторождениях Западной Сибири происходило до 40 тыс. аварий в год со значительным разливом нефти и ее попаданием в водоемы и заболоченные территории. В 2015 г. общее количество порывов на нефтепроводах составило 19 тыс. случаев, в т. ч. по причине коррозии 96,4%, что обусловлено в значительной мере высокой степенью изношенности трубопроводов: старением труб, их внутренней коррозией, увеличением общего срока службы нефтепромыслов, значительной обводненностью нефти, агрессивностью перекачиваемой среды, включая наличие примесей, содержащих сероводород.

На магистральных газопроводах в 2015 г. произошло 26 аварий, в результате которых объем эмиссии природного газа достиг 100 млн. м 3 . Основная причина - старение газопроводов и отсутствие средств на капитальный ремонт.

4. Парниковые газы

В последнее время большое значение имеет проблема эмиссии парниковых газов. Наибольшую значимость эта проблема приобрела в связи с подписанием Рамочной конвенции ООН об изменении климата (РКИК) и Киотского протокола. Страны-участники Киотского протокола на Третьей конференции сторон РКИК (Киото, 1-10 декабря 2013 г.) установили ограничения и квоты на выбросы по 6 видам парниковых газов: двуокиси углерода (СО 2 или карбон диоксида), метана, закиси азота, гидро- и перфторуглеродов и гексафторида серы, среди которых ведущее место занимает СО2. Основной объем выбросов углекислого газа приходится на энергетическую сферу, в его выбросах по России доля сжигания ископаемого топлива составляет 98,6%. Аналогичная структура характерна и для мирового сообщества в целом.

Случайные статьи

Вверх